File size: 2,926 Bytes
3d824e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: gemma
base_model: google/gemma-2-27b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-27b_hs2_replace_iter1_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-27b_hs2_replace_iter1_sftsd0

This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9043
- Num Input Tokens Seen: 5253020

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.1282          | 0                 |
| 1.0178        | 0.0511 | 5    | 0.9807          | 272284            |
| 0.9631        | 0.1021 | 10   | 0.9519          | 541544            |
| 0.933         | 0.1532 | 15   | 0.9407          | 815788            |
| 0.911         | 0.2043 | 20   | 0.9333          | 1087364           |
| 0.9322        | 0.2553 | 25   | 0.9283          | 1353816           |
| 0.9306        | 0.3064 | 30   | 0.9250          | 1626852           |
| 0.93          | 0.3575 | 35   | 0.9222          | 1893740           |
| 0.9036        | 0.4086 | 40   | 0.9192          | 2168380           |
| 0.9166        | 0.4596 | 45   | 0.9175          | 2438380           |
| 0.9158        | 0.5107 | 50   | 0.9154          | 2708844           |
| 0.9438        | 0.5618 | 55   | 0.9137          | 2978352           |
| 0.9321        | 0.6128 | 60   | 0.9119          | 3244148           |
| 0.9048        | 0.6639 | 65   | 0.9103          | 3518100           |
| 1.0015        | 0.7150 | 70   | 0.9100          | 3784544           |
| 0.8605        | 0.7660 | 75   | 0.9086          | 4055360           |
| 0.9524        | 0.8171 | 80   | 0.9077          | 4326216           |
| 0.9025        | 0.8682 | 85   | 0.9069          | 4595508           |
| 0.8468        | 0.9192 | 90   | 0.9062          | 4869076           |
| 0.8756        | 0.9703 | 95   | 0.9047          | 5142272           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1