--- library_name: transformers language: - fr license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - CAENNAIS model-index: - name: pyannote/segmentation-3.0 results: [] --- # pyannote/segmentation-3.0 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the CAENNAIS dataset. It achieves the following results on the evaluation set: - Loss: 0.8139 - Model Preparation Time: 0.0035 - Der: 0.5111 - False Alarm: 0.1728 - Missed Detection: 0.2406 - Confusion: 0.0978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.8517 | 1.0 | 300 | 0.8676 | 0.0035 | 0.5466 | 0.1920 | 0.2425 | 0.1121 | | 0.7998 | 2.0 | 600 | 0.8499 | 0.0035 | 0.5307 | 0.1640 | 0.2628 | 0.1039 | | 0.7867 | 3.0 | 900 | 0.8529 | 0.0035 | 0.5366 | 0.1602 | 0.2767 | 0.0997 | | 0.7777 | 4.0 | 1200 | 0.8351 | 0.0035 | 0.5296 | 0.1912 | 0.2333 | 0.1050 | | 0.7596 | 5.0 | 1500 | 0.8185 | 0.0035 | 0.5118 | 0.1817 | 0.2239 | 0.1062 | | 0.7591 | 6.0 | 1800 | 0.8083 | 0.0035 | 0.5101 | 0.1655 | 0.2540 | 0.0906 | | 0.7555 | 7.0 | 2100 | 0.8141 | 0.0035 | 0.5109 | 0.1711 | 0.2396 | 0.1001 | | 0.7394 | 8.0 | 2400 | 0.8145 | 0.0035 | 0.5119 | 0.1726 | 0.2405 | 0.0988 | | 0.7458 | 9.0 | 2700 | 0.8138 | 0.0035 | 0.5107 | 0.1721 | 0.2403 | 0.0983 | | 0.705 | 10.0 | 3000 | 0.8139 | 0.0035 | 0.5111 | 0.1728 | 0.2406 | 0.0978 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1