--- pipeline_tag: translation library_name: transformers --- ### Biomedical French to English Neural Machine Translation Source language: fr Target language: en Training dataset: WMT20, Cochrane bilingual parallel corpus, Taus Corona Crisis corpus, Mlia Covid corpus Development set: Medline 18, Medline 19 Test set: Medline 20 Model: transformer Pre-processing: SentencePiece ## Benchmark
| **Test set** | **BLEU** | |----------------|----------| | Medline20 | 35.8 |
## How to use this Model? * This model can be accessed via git clone: ``` git clone https://huggingface.co/SLPG/Biomedical_French_to_English ``` * You can use Fairseq library to access the model for translations: ``` from fairseq.models.transformer import TransformerModel ``` * Load the model ``` model = TransformerModel.from_pretrained('path/to/model') ``` * Set the model to evaluation mode ``` model.eval() ``` * Perform inference ``` input_text = 'Hello, how are you?' output_text = model.translate(input_text) print(output_text) ``` ## Citation **If you use our model, kindly cite our [paper](https://hal.science/hal-03430610/document)**: ``` @inproceedings{xu2021lisn, title={LISN@ WMT 2021}, author={Xu, Jitao and Rauf, Sadaf Abdul and Pham, Minh Quang and Yvon, Fran{\c{c}}ois}, booktitle={6th Conference on Statistical Machine Translation}, year={2021} } ```