---
pipeline_tag: translation
library_name: transformers
---
### Biomedical French to English Neural Machine Translation
Source language: fr
Target language: en
Training dataset: WMT20, Cochrane bilingual parallel corpus, Taus Corona Crisis corpus, Mlia Covid corpus
Development set: Medline 18, Medline 19
Test set: Medline 20
Model: transformer
Pre-processing: SentencePiece
## Benchmark
| **Test set** | **BLEU** |
|----------------|----------|
| Medline20 | 35.8 |
## How to use this Model?
* This model can be accessed via git clone:
```
git clone https://huggingface.co/SLPG/Biomedical_French_to_English
```
* You can use Fairseq library to access the model for translations:
```
from fairseq.models.transformer import TransformerModel
```
* Load the model
```
model = TransformerModel.from_pretrained('path/to/model')
```
* Set the model to evaluation mode
```
model.eval()
```
* Perform inference
```
input_text = 'Hello, how are you?'
output_text = model.translate(input_text)
print(output_text)
```
## Citation
**If you use our model, kindly cite our [paper](https://hal.science/hal-03430610/document)**:
```
@inproceedings{xu2021lisn,
title={LISN@ WMT 2021},
author={Xu, Jitao and Rauf, Sadaf Abdul and Pham, Minh Quang and Yvon, Fran{\c{c}}ois},
booktitle={6th Conference on Statistical Machine Translation},
year={2021}
}
```