SSen99 commited on
Commit
9a5c86c
·
verified ·
1 Parent(s): 3cffb23

Basic version with llama2-7b

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ AstroBot/vectorstore/db_faiss/index.faiss filter=lfs diff=lfs merge=lfs -text
AstroBot/.chainlit/.langchain.db ADDED
Binary file (81.9 kB). View file
 
AstroBot/.chainlit/config.toml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ # If true (default), the app will be available to anonymous users.
3
+ # If false, users will need to authenticate and be part of the project to use the app.
4
+ public = true
5
+
6
+ # The project ID (found on https://cloud.chainlit.io).
7
+ # The project ID is required when public is set to false or when using the cloud database.
8
+ #id = ""
9
+
10
+ # Uncomment if you want to persist the chats.
11
+ # local will create a database in your .chainlit directory (requires node.js installed).
12
+ # cloud will use the Chainlit cloud database.
13
+ # custom will load use your custom client.
14
+ # database = "local"
15
+
16
+ # Whether to enable telemetry (default: true). No personal data is collected.
17
+ enable_telemetry = true
18
+
19
+ # List of environment variables to be provided by each user to use the app.
20
+ user_env = []
21
+
22
+ # Duration (in seconds) during which the session is saved when the connection is lost
23
+ session_timeout = 3600
24
+
25
+ [UI]
26
+ # Name of the app and chatbot.
27
+ name = "Chatbot"
28
+
29
+ # Description of the app and chatbot. This is used for HTML tags.
30
+ # description = ""
31
+
32
+ # The default value for the expand messages settings.
33
+ default_expand_messages = false
34
+
35
+ # Hide the chain of thought details from the user in the UI.
36
+ hide_cot = false
37
+
38
+ # Link to your github repo. This will add a github button in the UI's header.
39
+ # github = ""
40
+
41
+ # Override default MUI light theme. (Check theme.ts)
42
+ [UI.theme.light]
43
+ #background = "#FAFAFA"
44
+ #paper = "#FFFFFF"
45
+
46
+ [UI.theme.light.primary]
47
+ #main = "#F80061"
48
+ #dark = "#980039"
49
+ #light = "#FFE7EB"
50
+
51
+ # Override default MUI dark theme. (Check theme.ts)
52
+ [UI.theme.dark]
53
+ #background = "#FAFAFA"
54
+ #paper = "#FFFFFF"
55
+
56
+ [UI.theme.dark.primary]
57
+ #main = "#F80061"
58
+ #dark = "#980039"
59
+ #light = "#FFE7EB"
60
+
61
+
62
+ [meta]
63
+ generated_by = "0.6.2"
AstroBot/README.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Astrobot
2
+ An AI powered chatbot based on llama2 for answering your questions related to astronomy and astrophysics.
AstroBot/__pycache__/model.cpython-311.pyc ADDED
Binary file (4.65 kB). View file
 
AstroBot/__pycache__/model.cpython-39.pyc ADDED
Binary file (3.01 kB). View file
 
AstroBot/chainlit.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Welcome to AstroBot! 🚀🤖
2
+
3
+ Hi there! 👋 I am AstroBot - a locally-hosted astronomy chatbot designed to answer your questions in the field of astronomy!
4
+
AstroBot/load.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.embeddings import HuggingFaceEmbeddings
2
+ from langchain.vectorstores import FAISS
3
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+
6
+ DATA_PATH = 'Files/'
7
+ DB_FAISS_PATH = 'vectorstore/db_faiss'
8
+
9
+ # Create vector database
10
+ def create_vector_db():
11
+ loader = DirectoryLoader(DATA_PATH,
12
+ glob='*.pdf',
13
+ loader_cls=PyPDFLoader)
14
+
15
+ documents = loader.load()
16
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
17
+ chunk_overlap=50)
18
+ texts = text_splitter.split_documents(documents)
19
+
20
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
21
+ model_kwargs={'device': 'cpu'})
22
+
23
+ db = FAISS.from_documents(texts, embeddings)
24
+ db.save_local(DB_FAISS_PATH)
25
+
26
+ if __name__ == "__main__":
27
+ create_vector_db()
AstroBot/model.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader
2
+ from langchain import PromptTemplate
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.llms import CTransformers
6
+ from langchain.chains import RetrievalQA
7
+ import chainlit as cl
8
+
9
+ DB_FAISS_PATH = 'vectorstore/db_faiss'
10
+
11
+ custom_prompt_template = """Use the following pieces of information to answer the user's questions.
12
+ If you don't know the answer, just say that you don't know, but don't try to make up an answer.
13
+
14
+ Context: {context}
15
+ Question: {question}
16
+
17
+ Only return the helpful answer below and nothing else.
18
+ Helpful answer:
19
+ """
20
+
21
+ def set_custom_prompt():
22
+ """
23
+ Prompt template for QA retrieval for each vectorstore
24
+ """
25
+ prompt = PromptTemplate(template=custom_prompt_template,
26
+ input_variables=['context', 'question'])
27
+ return prompt
28
+
29
+ #Retrieval QA Chain
30
+ def retrieval_qa_chain(llm, prompt, db):
31
+ qa_chain = RetrievalQA.from_chain_type(llm=llm,
32
+ chain_type='stuff',
33
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
34
+ return_source_documents=True,
35
+ chain_type_kwargs={'prompt': prompt}
36
+ )
37
+ return qa_chain
38
+
39
+ #Loading the model
40
+ def load_llm():
41
+ # Load the locally downloaded model here
42
+ llm = CTransformers(
43
+ model = "llama-2-7b-chat.ggmlv3.q8_0.bin",
44
+ model_type="llama",
45
+ max_new_tokens = 512,
46
+ temperature = 0.5
47
+ )
48
+ return llm
49
+
50
+ #QA Model Function
51
+ def qa_bot():
52
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
53
+ model_kwargs={'device': 'cpu'})
54
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings)
55
+ llm = load_llm()
56
+ qa_prompt = set_custom_prompt()
57
+ qa = retrieval_qa_chain(llm, qa_prompt, db)
58
+
59
+ return qa
60
+
61
+ #output function
62
+ def final_result(query):
63
+ qa_result = qa_bot()
64
+ response = qa_result({'query': query})
65
+ return response
66
+
67
+ #chainlit code
68
+ @cl.on_chat_start
69
+ async def start():
70
+ chain = qa_bot()
71
+ msg = cl.Message(content="Starting the bot...")
72
+ await msg.send()
73
+ msg.content = "Hi, Welcome to AstroBot. What is your query?"
74
+ await msg.update()
75
+
76
+ cl.user_session.set("chain", chain)
77
+
78
+ @cl.on_message
79
+ async def main(message):
80
+ chain = cl.user_session.get("chain")
81
+ cb = cl.AsyncLangchainCallbackHandler(
82
+ stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
83
+ )
84
+ cb.answer_reached = True
85
+ res = await chain.acall(message, callbacks=[cb])
86
+ answer = res["result"]
87
+ sources = res["source_documents"]
88
+
89
+ if sources:
90
+ answer += f"\nSources:" + str(sources)
91
+ else:
92
+ answer += "\nNo sources found"
93
+
94
+ await cl.Message(content=answer).send()
AstroBot/requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pypdf
2
+ langchain
3
+ torch
4
+ accelerate
5
+ bitsandbytes
6
+ transformers
7
+ sentence_transformers
8
+ faiss_cpu
9
+ chainlit
10
+ ctransformers
11
+ protobuf==3.20.*
AstroBot/vectorstore/db_faiss/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6caa034bb007e2add887fe4566d2ad634be7a2823e58a2725f1b5ec6a85be251
3
+ size 7620141
AstroBot/vectorstore/db_faiss/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19c32c83481ebbdb462d24bcb194dab3e4d1b9865aa495def7f2cdadb8f326ef
3
+ size 2725130