Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
license_link: >-
|
| 4 |
+
https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
|
| 5 |
+
---
|
| 6 |
+
# Xinet_picasso_muse
|
| 7 |
+
|
| 8 |
+
## **Use case** : `Neural style transfer`
|
| 9 |
+
|
| 10 |
+
# Model description
|
| 11 |
+
|
| 12 |
+
Xinet_picasso_muse is a lightweight Neural Style Transfer approach based on [XiNets](https://openaccess.thecvf.com/content/ICCV2023/papers/Ancilotto_XiNet_Efficient_Neural_Networks_for_tinyML_ICCV_2023_paper.pdf), neural networks especially developed for microcontrollers and embedded applications. It has been trained using the COCO dataset for content images and the painting *La Muse* of **Pablo Picasso** for style image. This model achieves an extremely lightweight transfer style mechanism and high-quality stylized outputs, significantly reducing computational complexity.
|
| 13 |
+
|
| 14 |
+
Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8 format using tensorflow lite converter. To reach a better performances, the mirror padding ops have been replaced with zero padding ops.
|
| 15 |
+
|
| 16 |
+
## Network information
|
| 17 |
+
| Network Information | Value |
|
| 18 |
+
|-------------------------|--------------------------------------|
|
| 19 |
+
| Framework | Tensorflow |
|
| 20 |
+
| Quantization | int8 |
|
| 21 |
+
| Paper | [Link to Paper](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e) |
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Recommended platform
|
| 26 |
+
| Platform | Supported | Recommended |
|
| 27 |
+
|----------|-----------|-------------|
|
| 28 |
+
| STM32L0 | [] | [] |
|
| 29 |
+
| STM32L4 | [] | [] |
|
| 30 |
+
| STM32U5 | [] | [] |
|
| 31 |
+
| STM32MP1 | [] | [] |
|
| 32 |
+
| STM32MP2 | [] | [] |
|
| 33 |
+
| STM32N6| [x] | [x] |
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
# Performances
|
| 37 |
+
|
| 38 |
+
## Metrics
|
| 39 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
### Reference **NPU** memory footprint based on COCO dataset
|
| 43 |
+
|
| 44 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
| 45 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
| 46 |
+
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2685.38 | 600.0 | 851.86 | 10.2.0 | 2.2.0
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
### Reference **NPU** inference time based on COCO Person dataset
|
| 51 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
| 52 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
| 53 |
+
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 61.96 | 16.13 | 10.2.0 | 2.2.0 |
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
## Retraining and Integration in a Simple Example
|
| 57 |
+
Retraining and deployment services are currently not provided for this model. They should be supported in the future releases.
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
## References
|
| 61 |
+
|
| 62 |
+
<a id="1">[1]</a> "Painting the Starry Night using XiNets" Alberto Ancilotto, Elisabetta Farella - 2024 IEEE International Conference on Pervasive Computing [Link](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e)
|