FBAGSTM commited on
Commit
09f4f17
·
verified ·
1 Parent(s): 940f719

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -3
README.md CHANGED
@@ -1,3 +1,62 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: >-
4
+ https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
5
+ ---
6
+ # Xinet_picasso_muse
7
+
8
+ ## **Use case** : `Neural style transfer`
9
+
10
+ # Model description
11
+
12
+ Xinet_picasso_muse is a lightweight Neural Style Transfer approach based on [XiNets](https://openaccess.thecvf.com/content/ICCV2023/papers/Ancilotto_XiNet_Efficient_Neural_Networks_for_tinyML_ICCV_2023_paper.pdf), neural networks especially developed for microcontrollers and embedded applications. It has been trained using the COCO dataset for content images and the painting *La Muse* of **Pablo Picasso** for style image. This model achieves an extremely lightweight transfer style mechanism and high-quality stylized outputs, significantly reducing computational complexity.
13
+
14
+ Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8 format using tensorflow lite converter. To reach a better performances, the mirror padding ops have been replaced with zero padding ops.
15
+
16
+ ## Network information
17
+ | Network Information | Value |
18
+ |-------------------------|--------------------------------------|
19
+ | Framework | Tensorflow |
20
+ | Quantization | int8 |
21
+ | Paper | [Link to Paper](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e) |
22
+
23
+
24
+
25
+ ## Recommended platform
26
+ | Platform | Supported | Recommended |
27
+ |----------|-----------|-------------|
28
+ | STM32L0 | [] | [] |
29
+ | STM32L4 | [] | [] |
30
+ | STM32U5 | [] | [] |
31
+ | STM32MP1 | [] | [] |
32
+ | STM32MP2 | [] | [] |
33
+ | STM32N6| [x] | [x] |
34
+
35
+ ---
36
+ # Performances
37
+
38
+ ## Metrics
39
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
40
+
41
+
42
+ ### Reference **NPU** memory footprint based on COCO dataset
43
+
44
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
45
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
46
+ | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2685.38 | 600.0 | 851.86 | 10.2.0 | 2.2.0
47
+
48
+
49
+
50
+ ### Reference **NPU** inference time based on COCO Person dataset
51
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
52
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
53
+ | [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 61.96 | 16.13 | 10.2.0 | 2.2.0 |
54
+
55
+
56
+ ## Retraining and Integration in a Simple Example
57
+ Retraining and deployment services are currently not provided for this model. They should be supported in the future releases.
58
+
59
+
60
+ ## References
61
+
62
+ <a id="1">[1]</a> "Painting the Starry Night using XiNets" Alberto Ancilotto, Elisabetta Farella - 2024 IEEE International Conference on Pervasive Computing [Link](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e)