|
from transformers import PretrainedConfig |
|
|
|
|
|
class SpecT1Config(PretrainedConfig): |
|
model_type = "spect1" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_attention_heads=32, |
|
num_hidden_layers=36, |
|
max_position_embeddings=32768, |
|
vocab_size=151680, |
|
attention_dropout=0.0, |
|
hidden_act="silu", |
|
max_window_layers=36, |
|
rope_theta=640000, |
|
sliding_window=32768, |
|
attention_bias=True, |
|
num_nextn_predict_layers=1, |
|
initializer_range=0.02, |
|
bos_token_id=151643, |
|
eos_token_id=151645, |
|
tie_word_embeddings=False, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.max_position_embeddings = max_position_embeddings |
|
self.vocab_size = vocab_size |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_window_layers = max_window_layers |
|
self.rope_theta = rope_theta |
|
self.sliding_window = sliding_window |
|
self.attention_bias = attention_bias |
|
self.num_nextn_predict_layers = num_nextn_predict_layers |
|
self.initializer_range = initializer_range |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|