Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: mit
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- svector
|
8 |
+
- reasoning
|
9 |
+
---
|
10 |
+
|
11 |
+
# Spec-T1-RL-7B
|
12 |
+
|
13 |
+
A high-precision mathematical and algorithmic reasoning model
|
14 |
+
|
15 |
+
[](https://huggingface.co/SVECTOR-CORPORATION/Spec-T1-RL-7B)
|
16 |
+
|
17 |
+
|
18 |
+
## π Model Card
|
19 |
+
|
20 |
+
| Model Details | Description |
|
21 |
+
|-----------------|----------------|
|
22 |
+
| Developer | SVECTOR |
|
23 |
+
| Model Size | 7 billion parameters |
|
24 |
+
| Context Length | 32,000 tokens |
|
25 |
+
| Training Data | Reasoning-focused datasets with mathematical, logical, and code content |
|
26 |
+
| Precision | `bfloat16`, `float16` |
|
27 |
+
| License | MIT |
|
28 |
+
| Release Date | May 2025 |
|
29 |
+
|
30 |
+
## π Model Overview
|
31 |
+
|
32 |
+
`Spec-T1-RL-7B` is a specialized large language model engineered for exceptional performance in mathematical reasoning, algorithmic problem-solving, and real-world code generation. Unlike general-purpose models, Spec-T1 has been architecturally designed and trained specifically to excel in domains requiring precise, logical thinking.
|
33 |
+
The model represents a significant advancement in specialized reasoning capabilities at the 7B parameter scale, outperforming much larger models on technical benchmarks while maintaining efficient deployment requirements.
|
34 |
+
|
35 |
+
## β¨ Key Capabilities
|
36 |
+
|
37 |
+
- Mathematical Reasoning: Solves complex math problems with step-by-step logical deduction
|
38 |
+
- Algorithmic Problem-Solving: Designs and analyzes algorithms across multiple domains
|
39 |
+
- Code Generation: Produces functional, high-quality code with strong test pass rates
|
40 |
+
- Precise Instruction Following: Responds accurately to structured technical prompts
|
41 |
+
- Symbolic Verification: Uses built-in verification mechanisms for mathematics and logic
|
42 |
+
|
43 |
+
## ποΈ Model Architecture
|
44 |
+
|
45 |
+
Spec-T1-RL-7B combines several architectural innovations to achieve its specialized reasoning capabilities:
|
46 |
+
|
47 |
+
- Foundation: Advanced transformer architecture with optimized attention mechanisms
|
48 |
+
- Mixture-of-Experts (MoE): Lightweight conditional computation for efficient scaling
|
49 |
+
- Activations: SwiGLU activations for improved gradient flow in mathematical operations
|
50 |
+
- Normalization: RMSNorm for faster convergence and stability in reasoning tasks
|
51 |
+
|
52 |
+
## π οΈ Training Methodology
|
53 |
+
|
54 |
+
Our model underwent a three-phase training process designed to optimize reasoning capabilities:
|
55 |
+
|
56 |
+
### 1οΈβ£ Reasoning-Aware Pretraining
|
57 |
+
- Specialized corpus with heavy emphasis on mathematical notation, logical syntax, and code
|
58 |
+
- Curriculum learning approach prioritizing structured reasoning patterns
|
59 |
+
- Custom tokenizer optimized for mathematical and programming syntax
|
60 |
+
|
61 |
+
### 2οΈβ£ Instruction Fine-Tuning
|
62 |
+
- 400K+ multi-domain, structured prompts focused on reasoning tasks
|
63 |
+
- Combined CodeInstruct methodology with ThoughtChain prompting
|
64 |
+
- Synthetic data generation with verification feedback loops
|
65 |
+
|
66 |
+
### 3οΈβ£ Reinforcement Learning Alignment
|
67 |
+
- Reward modeling using deterministic pass/fail signals for math and code correctness
|
68 |
+
- Unit test integration for real-time verification of generated solutions
|
69 |
+
- Symbolic verification of mathematical proofs and derivations
|
70 |
+
|
71 |
+
## π Benchmark Performance
|
72 |
+
|
73 |
+
The Spec-T1-RL-7B model demonstrates exceptional performance across reasoning benchmarks, particularly in mathematics and code generation tasks:
|
74 |
+
|
75 |
+
### General Reasoning
|
76 |
+
|
77 |
+
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|
78 |
+
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
|
79 |
+
| GPQA Diamond (Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 65.1 |
|
80 |
+
| SuperGPQA (Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 |52.8 |
|
81 |
+
| DROP (3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 86.2 |
|
82 |
+
| MMLU-Pro (EM) | 72.6 | 78.0 | 80.3 | 52.0 | 76.4 |
|
83 |
+
| IF-Eval (Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 83.3 |
|
84 |
+
|
85 |
+
### Mathematics
|
86 |
+
|
87 |
+
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|
88 |
+
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
|
89 |
+
| MATH-500 (Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 96.1 |
|
90 |
+
| AIME 2024 (Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 74.5 |
|
91 |
+
| AIME 2025 (Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 |68.3 |
|
92 |
+
|
93 |
+
### Code Generation
|
94 |
+
|
95 |
+
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|
96 |
+
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
|
97 |
+
| LiveCodeBench v5 (Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 60.2 |
|
98 |
+
| LiveCodeBench v6 (Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 54.4 |
|
99 |
+
|
100 |
+
## π» Usage Examples
|
101 |
+
|
102 |
+
### Basic Usage with Transformers
|
103 |
+
|
104 |
+
```python
|
105 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
106 |
+
|
107 |
+
# Load model and tokenizer
|
108 |
+
model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
|
110 |
+
|
111 |
+
# Mathematical reasoning example
|
112 |
+
prompt = """
|
113 |
+
Prove: The sum of the first n odd numbers is n^2.
|
114 |
+
"""
|
115 |
+
|
116 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
117 |
+
outputs = model.generate(inputs, max_new_tokens=512)
|
118 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
119 |
+
```
|
120 |
+
|
121 |
+
### Advanced Usage with Generation Parameters
|
122 |
+
|
123 |
+
```python
|
124 |
+
# Algorithm design example
|
125 |
+
prompt = """
|
126 |
+
Design an efficient algorithm to find the longest increasing subsequence in an array of integers.
|
127 |
+
"""
|
128 |
+
|
129 |
+
# Configure generation parameters for better reasoning
|
130 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
131 |
+
outputs = model.generate(
|
132 |
+
inputs,
|
133 |
+
max_new_tokens=1024,
|
134 |
+
temperature=0.1,
|
135 |
+
top_p=0.95,
|
136 |
+
do_sample=True,
|
137 |
+
num_return_sequences=1,
|
138 |
+
repetition_penalty=1.1
|
139 |
+
)
|
140 |
+
|
141 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
142 |
+
```
|
143 |
+
|
144 |
+
### Code Generation Example
|
145 |
+
|
146 |
+
```python
|
147 |
+
# Code generation example
|
148 |
+
prompt = """
|
149 |
+
Write a Python function that implements the A* search algorithm for pathfinding.
|
150 |
+
"""
|
151 |
+
|
152 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
153 |
+
outputs = model.generate(
|
154 |
+
inputs,
|
155 |
+
max_new_tokens=2048,
|
156 |
+
temperature=0.2,
|
157 |
+
top_p=0.9,
|
158 |
+
do_sample=True
|
159 |
+
)
|
160 |
+
|
161 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
162 |
+
```
|
163 |
+
|
164 |
+
## π Deployment
|
165 |
+
|
166 |
+
Spec-T1-RL-7B can be deployed on consumer hardware due to its efficient architecture and parameter count:
|
167 |
+
|
168 |
+
### Minimum Requirements
|
169 |
+
- 16GB VRAM (bfloat16/float16)
|
170 |
+
- 32GB system RAM
|
171 |
+
- CUDA-compatible GPU
|
172 |
+
|
173 |
+
### Recommended Configuration
|
174 |
+
- 24GB+ VRAM for optimal performance
|
175 |
+
- 64GB+ system RAM for long-context applications
|
176 |
+
- NVIDIA A10 or better
|
177 |
+
|
178 |
+
## π Citation
|
179 |
+
|
180 |
+
If you use Spec-T1-RL-7B in your research, please cite:
|
181 |
+
|
182 |
+
```bibtex
|
183 |
+
@misc{svector2025spect1,
|
184 |
+
title={Spec-T1-RL-7B: Structured Reasoning through Reinforcement Alignment},
|
185 |
+
author={SVECTOR Team},
|
186 |
+
year={2025},
|
187 |
+
}
|
188 |
+
```
|
189 |
+
|
190 |
+
## π License
|
191 |
+
|
192 |
+
Spec-T1-RL-7B is released under the MIT License.
|
193 |
+
|
194 |
+
## π¬ Contact
|
195 |
+
|
196 |
+
For questions, feedback, or collaboration inquiries, please contact:
|
197 |
+
- Email: [email protected]
|
198 |
+
- Twitter: [@SVECTOR_](https://x.com/SVECTOR_)
|
199 |
+
- GitHub: [SVECTOR-CORPORATION](https://github.com/SVECTOR-CORPORATION)
|