SVECTOR-OFFICIAL commited on
Commit
464ecf5
Β·
verified Β·
1 Parent(s): 02861db

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +199 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - svector
8
+ - reasoning
9
+ ---
10
+
11
+ # Spec-T1-RL-7B
12
+
13
+ A high-precision mathematical and algorithmic reasoning model
14
+
15
+ [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Spec--T1--RL--7B-yellow)](https://huggingface.co/SVECTOR-CORPORATION/Spec-T1-RL-7B)
16
+
17
+
18
+ ## πŸ“‹ Model Card
19
+
20
+ | Model Details | Description |
21
+ |-----------------|----------------|
22
+ | Developer | SVECTOR |
23
+ | Model Size | 7 billion parameters |
24
+ | Context Length | 32,000 tokens |
25
+ | Training Data | Reasoning-focused datasets with mathematical, logical, and code content |
26
+ | Precision | `bfloat16`, `float16` |
27
+ | License | MIT |
28
+ | Release Date | May 2025 |
29
+
30
+ ## πŸ” Model Overview
31
+
32
+ `Spec-T1-RL-7B` is a specialized large language model engineered for exceptional performance in mathematical reasoning, algorithmic problem-solving, and real-world code generation. Unlike general-purpose models, Spec-T1 has been architecturally designed and trained specifically to excel in domains requiring precise, logical thinking.
33
+ The model represents a significant advancement in specialized reasoning capabilities at the 7B parameter scale, outperforming much larger models on technical benchmarks while maintaining efficient deployment requirements.
34
+
35
+ ## ✨ Key Capabilities
36
+
37
+ - Mathematical Reasoning: Solves complex math problems with step-by-step logical deduction
38
+ - Algorithmic Problem-Solving: Designs and analyzes algorithms across multiple domains
39
+ - Code Generation: Produces functional, high-quality code with strong test pass rates
40
+ - Precise Instruction Following: Responds accurately to structured technical prompts
41
+ - Symbolic Verification: Uses built-in verification mechanisms for mathematics and logic
42
+
43
+ ## πŸ—οΈ Model Architecture
44
+
45
+ Spec-T1-RL-7B combines several architectural innovations to achieve its specialized reasoning capabilities:
46
+
47
+ - Foundation: Advanced transformer architecture with optimized attention mechanisms
48
+ - Mixture-of-Experts (MoE): Lightweight conditional computation for efficient scaling
49
+ - Activations: SwiGLU activations for improved gradient flow in mathematical operations
50
+ - Normalization: RMSNorm for faster convergence and stability in reasoning tasks
51
+
52
+ ## πŸ› οΈ Training Methodology
53
+
54
+ Our model underwent a three-phase training process designed to optimize reasoning capabilities:
55
+
56
+ ### 1️⃣ Reasoning-Aware Pretraining
57
+ - Specialized corpus with heavy emphasis on mathematical notation, logical syntax, and code
58
+ - Curriculum learning approach prioritizing structured reasoning patterns
59
+ - Custom tokenizer optimized for mathematical and programming syntax
60
+
61
+ ### 2️⃣ Instruction Fine-Tuning
62
+ - 400K+ multi-domain, structured prompts focused on reasoning tasks
63
+ - Combined CodeInstruct methodology with ThoughtChain prompting
64
+ - Synthetic data generation with verification feedback loops
65
+
66
+ ### 3️⃣ Reinforcement Learning Alignment
67
+ - Reward modeling using deterministic pass/fail signals for math and code correctness
68
+ - Unit test integration for real-time verification of generated solutions
69
+ - Symbolic verification of mathematical proofs and derivations
70
+
71
+ ## πŸ“Š Benchmark Performance
72
+
73
+ The Spec-T1-RL-7B model demonstrates exceptional performance across reasoning benchmarks, particularly in mathematics and code generation tasks:
74
+
75
+ ### General Reasoning
76
+
77
+ | Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
78
+ |-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
79
+ | GPQA Diamond (Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 65.1 |
80
+ | SuperGPQA (Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 |52.8 |
81
+ | DROP (3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 86.2 |
82
+ | MMLU-Pro (EM) | 72.6 | 78.0 | 80.3 | 52.0 | 76.4 |
83
+ | IF-Eval (Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 83.3 |
84
+
85
+ ### Mathematics
86
+
87
+ | Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
88
+ |-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
89
+ | MATH-500 (Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 96.1 |
90
+ | AIME 2024 (Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 74.5 |
91
+ | AIME 2025 (Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 |68.3 |
92
+
93
+ ### Code Generation
94
+
95
+ | Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
96
+ |-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
97
+ | LiveCodeBench v5 (Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 60.2 |
98
+ | LiveCodeBench v6 (Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 54.4 |
99
+
100
+ ## πŸ’» Usage Examples
101
+
102
+ ### Basic Usage with Transformers
103
+
104
+ ```python
105
+ from transformers import AutoModelForCausalLM, AutoTokenizer
106
+
107
+ # Load model and tokenizer
108
+ model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
109
+ tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
110
+
111
+ # Mathematical reasoning example
112
+ prompt = """
113
+ Prove: The sum of the first n odd numbers is n^2.
114
+ """
115
+
116
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
117
+ outputs = model.generate(inputs, max_new_tokens=512)
118
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
119
+ ```
120
+
121
+ ### Advanced Usage with Generation Parameters
122
+
123
+ ```python
124
+ # Algorithm design example
125
+ prompt = """
126
+ Design an efficient algorithm to find the longest increasing subsequence in an array of integers.
127
+ """
128
+
129
+ # Configure generation parameters for better reasoning
130
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
131
+ outputs = model.generate(
132
+ inputs,
133
+ max_new_tokens=1024,
134
+ temperature=0.1,
135
+ top_p=0.95,
136
+ do_sample=True,
137
+ num_return_sequences=1,
138
+ repetition_penalty=1.1
139
+ )
140
+
141
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
142
+ ```
143
+
144
+ ### Code Generation Example
145
+
146
+ ```python
147
+ # Code generation example
148
+ prompt = """
149
+ Write a Python function that implements the A* search algorithm for pathfinding.
150
+ """
151
+
152
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
153
+ outputs = model.generate(
154
+ inputs,
155
+ max_new_tokens=2048,
156
+ temperature=0.2,
157
+ top_p=0.9,
158
+ do_sample=True
159
+ )
160
+
161
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
162
+ ```
163
+
164
+ ## πŸš€ Deployment
165
+
166
+ Spec-T1-RL-7B can be deployed on consumer hardware due to its efficient architecture and parameter count:
167
+
168
+ ### Minimum Requirements
169
+ - 16GB VRAM (bfloat16/float16)
170
+ - 32GB system RAM
171
+ - CUDA-compatible GPU
172
+
173
+ ### Recommended Configuration
174
+ - 24GB+ VRAM for optimal performance
175
+ - 64GB+ system RAM for long-context applications
176
+ - NVIDIA A10 or better
177
+
178
+ ## πŸ“ Citation
179
+
180
+ If you use Spec-T1-RL-7B in your research, please cite:
181
+
182
+ ```bibtex
183
+ @misc{svector2025spect1,
184
+ title={Spec-T1-RL-7B: Structured Reasoning through Reinforcement Alignment},
185
+ author={SVECTOR Team},
186
+ year={2025},
187
+ }
188
+ ```
189
+
190
+ ## πŸ“„ License
191
+
192
+ Spec-T1-RL-7B is released under the MIT License.
193
+
194
+ ## πŸ“¬ Contact
195
+
196
+ For questions, feedback, or collaboration inquiries, please contact:
197
+ - Email: [email protected]
198
+ - Twitter: [@SVECTOR_](https://x.com/SVECTOR_)
199
+ - GitHub: [SVECTOR-CORPORATION](https://github.com/SVECTOR-CORPORATION)