SVECTOR-OFFICIAL commited on
Commit
42afa57
·
verified ·
1 Parent(s): 427addc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -1,3 +1,43 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - svector
5
+ - theta-35-mini
6
+ - theta
7
+ ---
8
+
9
+ # Theta-35-mini
10
+
11
+ A distilled, lightweight version of our Theta-35 main model, built on the Qwen architecture and distilled with the GRPO technique for high efficiency and strong performance in a compact footprint.
12
+
13
+ ## Model Description
14
+
15
+ **Theta-35-mini** is a small-footprint autoregressive language model distilled from our flagship Theta-35 model. We leveraged:
16
+
17
+ - **Qwen Model Architecture**: Starting from the Qwen2 base, adapting its efficient transformer blocks and optimized attention kernels.
18
+ - **GRPO Distillation**: Guided Representation Projection Optimization (GRPO) to transfer knowledge from Theta-35 to Theta-35-mini, preserving accuracy while drastically reducing parameter count.
19
+
20
+ This makes Theta-35-mini ideal for on-device inference, low-latency applications, and scenarios with tight compute or memory budgets.
21
+
22
+ ## Intended Uses
23
+
24
+ - **On-device text generation** (mobile apps, embedded systems)
25
+ - **Real-time chatbots** and conversational agents
26
+ - **Edge AI** applications with strict resource constraints
27
+
28
+ ## Usage
29
+
30
+ ```bash
31
+ # Install transformers
32
+ pip install transformers
33
+
34
+ # Load the model
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Theta-35-Mini")
38
+ model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Theta-35-Mini")
39
+
40
+ # Generate text
41
+ inputs = tokenizer("Once upon a time", return_tensors="pt")
42
+ outputs = model.generate(**inputs, max_length=100, temperature=0.7)
43
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))