# modeling_theta.py import torch import torch.nn as nn from transformers.modeling_outputs import BaseModelOutputWithPast from transformers import PreTrainedModel from configuration_theta import ThetaConfig class ThetaAttention(nn.Module): def __init__(self, config: ThetaConfig): super().__init__() self.num_heads = config.num_attention_heads self.head_dim = config.hidden_size // config.num_attention_heads self.scale = self.head_dim ** -0.5 self.q_proj = nn.Linear(config.hidden_size, config.hidden_size) self.k_proj = nn.Linear(config.hidden_size, config.hidden_size) self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): batch_size, seq_length, embed_dim = hidden_states.size() query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) key = key.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) value = value.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attn_scores = torch.matmul(query, key.transpose(-2, -1)) * self.scale attn_probs = nn.functional.softmax(attn_scores, dim=-1) attn_output = torch.matmul(attn_probs, value) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, embed_dim) attn_output = self.out_proj(attn_output) return attn_output class ThetaMLP(nn.Module): def __init__(self, config: ThetaConfig): super().__init__() self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.act = nn.SiLU() self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class ThetaBlock(nn.Module): def __init__(self, config: ThetaConfig): super().__init__() self.attention = ThetaAttention(config) self.mlp = ThetaMLP(config) self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, hidden_states): hidden_states = hidden_states + self.attention(self.norm1(hidden_states)) hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) return hidden_states class ThetaModel(PreTrainedModel): config_class = ThetaConfig def __init__(self, config: ThetaConfig): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([ThetaBlock(config) for _ in range(config.num_hidden_layers)]) self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids=None, attention_mask=None, **kwargs, ): hidden_states = self.embed_tokens(input_ids) for layer in self.layers: hidden_states = layer(hidden_states) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=None, past_key_values=None, ) class ThetaForCausalLM(PreTrainedModel): config_class = ThetaConfig def __init__(self, config: ThetaConfig): super().__init__(config) self.model = ThetaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def forward( self, input_ids=None, labels=None, **kwargs, ): outputs = self.model(input_ids=input_ids, **kwargs) logits = self.lm_head(outputs.last_hidden_state) loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}