nielsr HF Staff commited on
Commit
e2b375f
·
verified ·
1 Parent(s): 89d646a

Improve model card: add arXiv ID, H1 title, and update paper links

Browse files

This PR enhances the model card by:
1. Adding the `arxiv` identifier to the metadata for improved discoverability.
2. Introducing a top-level H1 heading to clearly state the model's name.
3. Updating the paper links in the introductory quick links and the "Resources" section to point to the official Hugging Face Papers page ([CoDA: Coding LM via Diffusion Adaptation](https://huggingface.co/papers/2510.03270)).
4. Integrating the paper citation directly into the model's introduction.
5. Removing the outdated "Technical report coming soon" statement.

These changes provide a more comprehensive, structured, and up-to-date model card.

Files changed (1) hide show
  1. README.md +22 -21
README.md CHANGED
@@ -1,29 +1,32 @@
1
  ---
2
- license: cc-by-nc-4.0
3
  language:
4
  - en
 
 
5
  pipeline_tag: text-generation
6
  tags:
7
  - text diffusion model
8
  - language model
9
  - code generation
10
- library_name: transformers
11
  ---
12
 
 
 
13
  <p align="center">
14
  <img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
15
  </p>
16
 
17
  <p align="center">
18
  <a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
19
- <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf"><strong>Technical Report</strong></a> ·
20
  <a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
21
  <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
22
  </p>
23
 
24
  <br>
25
 
26
- Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding.
27
 
28
  We're releasing CoDA as a lightweight yet capable model:
29
  - `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
@@ -34,29 +37,29 @@ CoDA leverages discrete diffusion processes to enable understanding of both past
34
  > [!NOTE]
35
  > This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
36
 
37
- # ⭐️ Highlights
38
 
39
- * **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
40
- * **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
41
- * **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
42
- * **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
43
- * **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
44
 
45
  ---
46
 
47
  ## 📊 Model Details
48
 
49
- - **Model Size**: 1.7B parameters
50
- - **Architecture**: Diffusion-based language model
51
- - **Training**: TPU-based pre-training with GPU fine-tuning
52
- - **Primary Use**: Code generation and completion tasks
53
 
54
  ## ✨ Key Features
55
 
56
- - **Bidirectional Context**: Diffusion modeling enables understanding of both past and future tokens
57
- - **Confidence-Guided Sampling**: Maintains competitive inference latency through intelligent sampling
58
- - **Lightweight Design**: Achieves strong performance with fewer parameters than comparable models
59
- - **Open Training Pipeline**: Fully reproducible training from pre-training to fine-tuning
60
 
61
  ## 📈 Performance
62
 
@@ -191,8 +194,6 @@ bash eval_mbpp_humaneval.sh
191
  ```
192
  ## 📚 Citation
193
 
194
- Technical report coming soon. For now, please cite:
195
-
196
  ```bibtex
197
  @misc{coda2025,
198
  title={CoDA: Coding LM via Diffusion Adaptation},
@@ -204,7 +205,7 @@ Technical report coming soon. For now, please cite:
204
 
205
  ## 🔗 Resources
206
 
207
- - 📄 **Technical Report**: [technical_report.pdf](https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf)
208
  - 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
209
  - 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
210
 
 
1
  ---
 
2
  language:
3
  - en
4
+ library_name: transformers
5
+ license: cc-by-nc-4.0
6
  pipeline_tag: text-generation
7
  tags:
8
  - text diffusion model
9
  - language model
10
  - code generation
11
+ arxiv: 2510.03270
12
  ---
13
 
14
+ # CoDA: Coding LM via Diffusion Adaptation
15
+
16
  <p align="center">
17
  <img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
18
  </p>
19
 
20
  <p align="center">
21
  <a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
22
+ <a href="https://huggingface.co/papers/2510.03270"><strong>Paper</strong></a> ·
23
  <a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
24
  <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
25
  </p>
26
 
27
  <br>
28
 
29
+ Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding, presented in the paper [CoDA: Coding LM via Diffusion Adaptation](https://huggingface.co/papers/2510.03270).
30
 
31
  We're releasing CoDA as a lightweight yet capable model:
32
  - `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
 
37
  > [!NOTE]
38
  > This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
39
 
40
+ # Highlights
41
 
42
+ * **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
43
+ * **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
44
+ * **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
45
+ * **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
46
+ * **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
47
 
48
  ---
49
 
50
  ## 📊 Model Details
51
 
52
+ - **Model Size**: 1.7B parameters
53
+ - **Architecture**: Diffusion-based language model
54
+ - **Training**: TPU-based pre-training with GPU fine-tuning
55
+ - **Primary Use**: Code generation and completion tasks
56
 
57
  ## ✨ Key Features
58
 
59
+ - **Bidirectional Context**: Diffusion modeling enables understanding of both past and future tokens
60
+ - **Confidence-Guided Sampling**: Maintains competitive inference latency through intelligent sampling
61
+ - **Lightweight Design**: Achieves strong performance with fewer parameters than comparable models
62
+ - **Open Training Pipeline**: Fully reproducible training from pre-training to fine-tuning
63
 
64
  ## 📈 Performance
65
 
 
194
  ```
195
  ## 📚 Citation
196
 
 
 
197
  ```bibtex
198
  @misc{coda2025,
199
  title={CoDA: Coding LM via Diffusion Adaptation},
 
205
 
206
  ## 🔗 Resources
207
 
208
+ - 📄 **Paper**: [huggingface.co/papers/2510.03270](https://huggingface.co/papers/2510.03270)
209
  - 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
210
  - 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
211