|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch CodeGen model.""" |
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_codegen import CodeGenConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono" |
|
_CONFIG_FOR_DOC = "CodeGenConfig" |
|
_TOKENIZER_FOR_DOC = "GPT2Tokenizer" |
|
|
|
|
|
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Salesforce/codegen-350M-nl", |
|
"Salesforce/codegen-350M-multi", |
|
"Salesforce/codegen-350M-mono", |
|
"Salesforce/codegen-2B-nl", |
|
"Salesforce/codegen-2B-multi", |
|
"Salesforce/codegen-2B-mono", |
|
"Salesforce/codegen-6B-nl", |
|
"Salesforce/codegen-6B-multi", |
|
"Salesforce/codegen-6B-mono", |
|
"Salesforce/codegen-16B-nl", |
|
"Salesforce/codegen-16B-multi", |
|
"Salesforce/codegen-16B-mono", |
|
|
|
] |
|
|
|
|
|
|
|
def fixed_pos_embedding(x, seq_dim=1, seq_len=None): |
|
dim = x.shape[-1] |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) |
|
sinusoid_inp = ( |
|
torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float() |
|
) |
|
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) |
|
|
|
|
|
|
|
def rotate_every_two(x): |
|
x1 = x[:, :, :, ::2] |
|
x2 = x[:, :, :, 1::2] |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return x.flatten(-2) |
|
|
|
|
|
|
|
def duplicate_interleave(m): |
|
""" |
|
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. |
|
""" |
|
dim0 = m.shape[0] |
|
m = m.view(-1, 1) |
|
m = m.repeat(1, 2) |
|
m = m.view(dim0, -1) |
|
return m |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(x, sincos, offset=0): |
|
sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos) |
|
|
|
return (x * cos) + (rotate_every_two(x) * sin) |
|
|
|
|
|
class CodeGenAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"causal_mask", |
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( |
|
1, 1, max_positions, max_positions |
|
), |
|
) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_attention_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_attention_heads |
|
if self.head_dim * self.num_attention_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" |
|
f" `num_attention_heads`: {self.num_attention_heads})." |
|
) |
|
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) |
|
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) |
|
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.rotary_dim = None |
|
if config.rotary_dim is not None: |
|
self.rotary_dim = config.rotary_dim |
|
|
|
def _split_heads(self, x, n_head, dim_head, mp_num): |
|
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) |
|
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) |
|
return reshaped |
|
|
|
def _merge_heads(self, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into n_ctx |
|
""" |
|
if len(tensor.shape) == 5: |
|
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() |
|
elif len(tensor.shape) == 4: |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
else: |
|
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") |
|
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def _attn( |
|
self, |
|
query, |
|
key, |
|
value, |
|
attention_mask=None, |
|
head_mask=None, |
|
): |
|
|
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] |
|
|
|
|
|
query = query.to(torch.float32) |
|
key = key.to(torch.float32) |
|
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
attn_weights = attn_weights / self.scale_attn |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.Softmax(dim=-1)(attn_weights) |
|
attn_weights = attn_weights.to(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor, Tuple[torch.Tensor]], |
|
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], |
|
]: |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
|
|
|
|
mp_num = 8 |
|
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) |
|
|
|
local_dim = self.head_dim * self.num_attention_heads // mp_num |
|
query, value, key = torch.split(qkv_split, local_dim, dim=-1) |
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) |
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) |
|
|
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) |
|
value = value.permute(0, 2, 1, 3) |
|
|
|
seq_len = key.shape[1] |
|
offset = 0 |
|
|
|
if layer_past is not None: |
|
offset = layer_past[0].shape[-2] |
|
seq_len += offset |
|
|
|
if self.rotary_dim is not None: |
|
k_rot = key[:, :, :, : self.rotary_dim] |
|
k_pass = key[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query[:, :, :, : self.rotary_dim] |
|
q_pass = query[:, :, :, self.rotary_dim :] |
|
|
|
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len) |
|
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset) |
|
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset) |
|
|
|
key = torch.cat([k_rot, k_pass], dim=-1) |
|
query = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len) |
|
key = apply_rotary_pos_emb(key, sincos, offset=offset) |
|
query = apply_rotary_pos_emb(query, sincos, offset=offset) |
|
|
|
key = key.permute(0, 2, 1, 3) |
|
query = query.permute(0, 2, 1, 3) |
|
|
|
if layer_past is not None: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) |
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) |
|
attn_output = self.out_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class CodeGenMLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
embed_dim = config.n_embd |
|
|
|
self.fc_in = nn.Linear(embed_dim, intermediate_size) |
|
self.fc_out = nn.Linear(intermediate_size, embed_dim) |
|
|
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: |
|
hidden_states = self.fc_in(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc_out(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class CodeGenBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd |
|
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.attn = CodeGenAttention(config) |
|
self.mlp = CodeGenMLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
hidden_states = attn_output + feed_forward_hidden_states + residual |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class CodeGenPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CodeGenConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["CodeGenBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear,)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, CodeGenModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
CODEGEN_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CODEGEN_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.", |
|
CODEGEN_START_DOCSTRING, |
|
) |
|
class CodeGenModel(CodeGenPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.n_embd |
|
self.vocab_size = config.vocab_size |
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The CodeGen Model transformer with a language modeling head on top. |
|
""", |
|
CODEGEN_START_DOCSTRING, |
|
) |
|
class CodeGenForCausalLM(CodeGenPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = CodeGenModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states).to(torch.float32) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or |
|
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past |
|
) |
|
|