xurantju commited on
Commit
c2b5145
β€’
1 Parent(s): 691fa19

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -10
README.md CHANGED
@@ -16,18 +16,8 @@ In the v1.5 (08/2024) release, we present a series of XGen-MM models including:
16
  - [πŸ€— xGen-MM-instruct](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5): `xgen-mm-phi3-mini-instruct-singleimg-r-v1.5`
17
  - [πŸ€— xGen-MM-instruct-dpo](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5): `xgen-mm-phi3-mini-instruct-dpo-r-v1.5`
18
 
19
- In addition to the models, our team also released a series of datasets for multi-modal pre-training, including:
20
- - [πŸƒ MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens](https://arxiv.org/abs/2406.11271)
21
- - [πŸ€— BLIP3-OCR-200M (coming soon)](https://huggingface.co/datasets/Salesforce/blip3-ocr-200m): a dataset with dense OCR annotations.
22
- - [πŸ€— BLIP3-GROUNDING-50M (coming soon)](https://huggingface.co/datasets/Salesforce/blip3-grounding-50m): a dataset for enhancing the ability to ground semantic concepts in images.
23
- - BLIP3-KALE (stay tuned): a large-scale curated high-quality caption dataset.
24
-
25
  For more details, check out our [tech report](https://arxiv.org/pdf/2408.08872), [fine-tuning code](https://github.com/salesforce/LAVIS/tree/xgen-mm), and project page (coming soon).
26
 
27
- # Data
28
- The base model is pre-trained on a mixture of data sources described above, with around 100 billion image-text tokens in total.
29
-
30
-
31
  # Results
32
 
33
  ### Few-shot Evaluation on Base model (without instruction tuning)
 
16
  - [πŸ€— xGen-MM-instruct](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5): `xgen-mm-phi3-mini-instruct-singleimg-r-v1.5`
17
  - [πŸ€— xGen-MM-instruct-dpo](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5): `xgen-mm-phi3-mini-instruct-dpo-r-v1.5`
18
 
 
 
 
 
 
 
19
  For more details, check out our [tech report](https://arxiv.org/pdf/2408.08872), [fine-tuning code](https://github.com/salesforce/LAVIS/tree/xgen-mm), and project page (coming soon).
20
 
 
 
 
 
21
  # Results
22
 
23
  ### Few-shot Evaluation on Base model (without instruction tuning)