Samoed commited on
Commit
7fa310b
·
verified ·
1 Parent(s): 1f7ca36

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +469 -0
README.md ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: sentence-transformers/all-MiniLM-L6-v2
6
+ results:
7
+ - task:
8
+ type: text-retrieval
9
+ name: Retrieval
10
+ dataset:
11
+ name: BSARDRetrieval (default)
12
+ type: mteb/BSARDRetrieval
13
+ config: default
14
+ split: test
15
+ revision: 8c492add6a14ac188f2debdaf6cbdfb406fd6be3
16
+ metrics:
17
+ - type: recall_at_100
18
+ value: 0.0
19
+ name: recall_at_100
20
+ source:
21
+ url: https://github.com/embeddings-benchmark/mteb/
22
+ name: MTEB
23
+ - task:
24
+ type: translation
25
+ name: BitextMining
26
+ dataset:
27
+ name: BornholmBitextMining (default)
28
+ type: mteb/BornholmBitextMining
29
+ config: default
30
+ split: test
31
+ revision: 5b02048bd75e79275aa91a1fce6cdfd3f4a391cb
32
+ metrics:
33
+ - type: f1
34
+ value: 0.2968132161955691
35
+ name: f1
36
+ source:
37
+ url: https://github.com/embeddings-benchmark/mteb/
38
+ name: MTEB
39
+ - task:
40
+ type: sentence-similarity
41
+ name: STS
42
+ dataset:
43
+ name: STS22 (ar)
44
+ type: mteb/sts22-crosslingual-sts
45
+ config: ar
46
+ split: test
47
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
48
+ metrics:
49
+ - type: cosine_spearman
50
+ value: 0.2263866797712348
51
+ name: cosine_spearman
52
+ source:
53
+ url: https://github.com/embeddings-benchmark/mteb/
54
+ name: MTEB
55
+ - task:
56
+ type: sentence-similarity
57
+ name: STS
58
+ dataset:
59
+ name: STS22 (de)
60
+ type: mteb/sts22-crosslingual-sts
61
+ config: de
62
+ split: test
63
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
64
+ metrics:
65
+ - type: cosine_spearman
66
+ value: 0.31044353994772356
67
+ name: cosine_spearman
68
+ source:
69
+ url: https://github.com/embeddings-benchmark/mteb/
70
+ name: MTEB
71
+ - task:
72
+ type: sentence-similarity
73
+ name: STS
74
+ dataset:
75
+ name: STS22 (de-en)
76
+ type: mteb/sts22-crosslingual-sts
77
+ config: de-en
78
+ split: test
79
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
80
+ metrics:
81
+ - type: cosine_spearman
82
+ value: 0.44038685024247604
83
+ name: cosine_spearman
84
+ source:
85
+ url: https://github.com/embeddings-benchmark/mteb/
86
+ name: MTEB
87
+ - task:
88
+ type: sentence-similarity
89
+ name: STS
90
+ dataset:
91
+ name: STS22 (de-fr)
92
+ type: mteb/sts22-crosslingual-sts
93
+ config: de-fr
94
+ split: test
95
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
96
+ metrics:
97
+ - type: cosine_spearman
98
+ value: 0.3006758748207823
99
+ name: cosine_spearman
100
+ source:
101
+ url: https://github.com/embeddings-benchmark/mteb/
102
+ name: MTEB
103
+ - task:
104
+ type: sentence-similarity
105
+ name: STS
106
+ dataset:
107
+ name: STS22 (de-pl)
108
+ type: mteb/sts22-crosslingual-sts
109
+ config: de-pl
110
+ split: test
111
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
112
+ metrics:
113
+ - type: cosine_spearman
114
+ value: 0.04927056559940413
115
+ name: cosine_spearman
116
+ source:
117
+ url: https://github.com/embeddings-benchmark/mteb/
118
+ name: MTEB
119
+ - task:
120
+ type: sentence-similarity
121
+ name: STS
122
+ dataset:
123
+ name: STS22 (en)
124
+ type: mteb/sts22-crosslingual-sts
125
+ config: en
126
+ split: test
127
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
128
+ metrics:
129
+ - type: cosine_spearman
130
+ value: 0.6721465212910986
131
+ name: cosine_spearman
132
+ source:
133
+ url: https://github.com/embeddings-benchmark/mteb/
134
+ name: MTEB
135
+ - task:
136
+ type: sentence-similarity
137
+ name: STS
138
+ dataset:
139
+ name: STS22 (es)
140
+ type: mteb/sts22-crosslingual-sts
141
+ config: es
142
+ split: test
143
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
144
+ metrics:
145
+ - type: cosine_spearman
146
+ value: 0.5477772552456677
147
+ name: cosine_spearman
148
+ source:
149
+ url: https://github.com/embeddings-benchmark/mteb/
150
+ name: MTEB
151
+ - task:
152
+ type: sentence-similarity
153
+ name: STS
154
+ dataset:
155
+ name: STS22 (es-en)
156
+ type: mteb/sts22-crosslingual-sts
157
+ config: es-en
158
+ split: test
159
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
160
+ metrics:
161
+ - type: cosine_spearman
162
+ value: 0.5341895837272506
163
+ name: cosine_spearman
164
+ source:
165
+ url: https://github.com/embeddings-benchmark/mteb/
166
+ name: MTEB
167
+ - task:
168
+ type: sentence-similarity
169
+ name: STS
170
+ dataset:
171
+ name: STS22 (es-it)
172
+ type: mteb/sts22-crosslingual-sts
173
+ config: es-it
174
+ split: test
175
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
176
+ metrics:
177
+ - type: cosine_spearman
178
+ value: 0.44269936659450304
179
+ name: cosine_spearman
180
+ source:
181
+ url: https://github.com/embeddings-benchmark/mteb/
182
+ name: MTEB
183
+ - task:
184
+ type: sentence-similarity
185
+ name: STS
186
+ dataset:
187
+ name: STS22 (fr)
188
+ type: mteb/sts22-crosslingual-sts
189
+ config: fr
190
+ split: test
191
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
192
+ metrics:
193
+ - type: cosine_spearman
194
+ value: 0.7700398643056744
195
+ name: cosine_spearman
196
+ source:
197
+ url: https://github.com/embeddings-benchmark/mteb/
198
+ name: MTEB
199
+ - task:
200
+ type: sentence-similarity
201
+ name: STS
202
+ dataset:
203
+ name: STS22 (fr-pl)
204
+ type: mteb/sts22-crosslingual-sts
205
+ config: fr-pl
206
+ split: test
207
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
208
+ metrics:
209
+ - type: cosine_spearman
210
+ value: 0.50709255283711
211
+ name: cosine_spearman
212
+ source:
213
+ url: https://github.com/embeddings-benchmark/mteb/
214
+ name: MTEB
215
+ - task:
216
+ type: sentence-similarity
217
+ name: STS
218
+ dataset:
219
+ name: STS22 (it)
220
+ type: mteb/sts22-crosslingual-sts
221
+ config: it
222
+ split: test
223
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
224
+ metrics:
225
+ - type: cosine_spearman
226
+ value: 0.6039610834515271
227
+ name: cosine_spearman
228
+ source:
229
+ url: https://github.com/embeddings-benchmark/mteb/
230
+ name: MTEB
231
+ - task:
232
+ type: sentence-similarity
233
+ name: STS
234
+ dataset:
235
+ name: STS22 (pl)
236
+ type: mteb/sts22-crosslingual-sts
237
+ config: pl
238
+ split: test
239
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
240
+ metrics:
241
+ - type: cosine_spearman
242
+ value: 0.26768906191975933
243
+ name: cosine_spearman
244
+ source:
245
+ url: https://github.com/embeddings-benchmark/mteb/
246
+ name: MTEB
247
+ - task:
248
+ type: sentence-similarity
249
+ name: STS
250
+ dataset:
251
+ name: STS22 (pl-en)
252
+ type: mteb/sts22-crosslingual-sts
253
+ config: pl-en
254
+ split: test
255
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
256
+ metrics:
257
+ - type: cosine_spearman
258
+ value: 0.32797912957778136
259
+ name: cosine_spearman
260
+ source:
261
+ url: https://github.com/embeddings-benchmark/mteb/
262
+ name: MTEB
263
+ - task:
264
+ type: sentence-similarity
265
+ name: STS
266
+ dataset:
267
+ name: STS22 (ru)
268
+ type: mteb/sts22-crosslingual-sts
269
+ config: ru
270
+ split: test
271
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
272
+ metrics:
273
+ - type: cosine_spearman
274
+ value: 0.14721380413194854
275
+ name: cosine_spearman
276
+ source:
277
+ url: https://github.com/embeddings-benchmark/mteb/
278
+ name: MTEB
279
+ - task:
280
+ type: sentence-similarity
281
+ name: STS
282
+ dataset:
283
+ name: STS22 (tr)
284
+ type: mteb/sts22-crosslingual-sts
285
+ config: tr
286
+ split: test
287
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
288
+ metrics:
289
+ - type: cosine_spearman
290
+ value: 0.3369451080773859
291
+ name: cosine_spearman
292
+ source:
293
+ url: https://github.com/embeddings-benchmark/mteb/
294
+ name: MTEB
295
+ - task:
296
+ type: sentence-similarity
297
+ name: STS
298
+ dataset:
299
+ name: STS22 (zh)
300
+ type: mteb/sts22-crosslingual-sts
301
+ config: zh
302
+ split: test
303
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
304
+ metrics:
305
+ - type: cosine_spearman
306
+ value: 0.4492964024177277
307
+ name: cosine_spearman
308
+ source:
309
+ url: https://github.com/embeddings-benchmark/mteb/
310
+ name: MTEB
311
+ - task:
312
+ type: sentence-similarity
313
+ name: STS
314
+ dataset:
315
+ name: STS22 (zh-en)
316
+ type: mteb/sts22-crosslingual-sts
317
+ config: zh-en
318
+ split: test
319
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
320
+ metrics:
321
+ - type: cosine_spearman
322
+ value: 0.41643997417444484
323
+ name: cosine_spearman
324
+ source:
325
+ url: https://github.com/embeddings-benchmark/mteb/
326
+ name: MTEB
327
+ ---
328
+ # all-MiniLM-L6-v2
329
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
330
+
331
+ ## Usage (Sentence-Transformers)
332
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
333
+
334
+ ```
335
+ pip install -U sentence-transformers
336
+ ```
337
+
338
+ Then you can use the model like this:
339
+ ```python
340
+ from sentence_transformers import SentenceTransformer
341
+ sentences = ["This is an example sentence", "Each sentence is converted"]
342
+
343
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
344
+ embeddings = model.encode(sentences)
345
+ print(embeddings)
346
+ ```
347
+
348
+ ## Usage (HuggingFace Transformers)
349
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
350
+
351
+ ```python
352
+ from transformers import AutoTokenizer, AutoModel
353
+ import torch
354
+ import torch.nn.functional as F
355
+
356
+ #Mean Pooling - Take attention mask into account for correct averaging
357
+ def mean_pooling(model_output, attention_mask):
358
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
359
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
360
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
361
+
362
+
363
+ # Sentences we want sentence embeddings for
364
+ sentences = ['This is an example sentence', 'Each sentence is converted']
365
+
366
+ # Load model from HuggingFace Hub
367
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
368
+ model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
369
+
370
+ # Tokenize sentences
371
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
372
+
373
+ # Compute token embeddings
374
+ with torch.no_grad():
375
+ model_output = model(**encoded_input)
376
+
377
+ # Perform pooling
378
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
379
+
380
+ # Normalize embeddings
381
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
382
+
383
+ print("Sentence embeddings:")
384
+ print(sentence_embeddings)
385
+ ```
386
+
387
+ ## Evaluation Results
388
+
389
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
390
+
391
+ ------
392
+
393
+ ## Background
394
+
395
+ The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
396
+ contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
397
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
398
+
399
+ We developed this model during the
400
+ [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
401
+ organized by Hugging Face. We developed this model as part of the project:
402
+ [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
403
+
404
+ ## Intended uses
405
+
406
+ Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
407
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
408
+
409
+ By default, input text longer than 256 word pieces is truncated.
410
+
411
+
412
+ ## Training procedure
413
+
414
+ ### Pre-training
415
+
416
+ We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
417
+
418
+ ### Fine-tuning
419
+
420
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
421
+ We then apply the cross entropy loss by comparing with true pairs.
422
+
423
+ #### Hyper parameters
424
+
425
+ We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
426
+ We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
427
+ a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
428
+
429
+ #### Training data
430
+
431
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
432
+ We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
433
+
434
+
435
+ | Dataset | Paper | Number of training tuples |
436
+ |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
437
+ | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
438
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
439
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
440
+ | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
441
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
442
+ | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
443
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
444
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
445
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
446
+ | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
447
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
448
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
449
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
450
+ | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
451
+ | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
452
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
453
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
454
+ | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
455
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
456
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
457
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
458
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
459
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
460
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
461
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
462
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
463
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
464
+ | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
465
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
466
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
467
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
468
+ | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
469
+ | **Total** | | **1,170,060,424** |