--- language: en license: apache-2.0 library_name: peft pipeline_tag: text-generation tags: - llama - construction - building-regulations - lora - custom construction industry dataset --- # LLAMA3.1-8B-Construction This is a fine-tuned version of LLAMA3.1-8B optimized for construction industry and building regulations knowledge. ## Model Details - **Base Model:** meta-llama/Llama-3.1-8B - **Fine-tuning Method:** LoRA (Low-Rank Adaptation) - **Training Data:** Custom dataset focusing on construction industry standards, building regulations, and safety requirements - **Usage:** This model is designed to answer questions about building codes, construction best practices, and regulatory compliance ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import PeftModel, PeftConfig import torch # Load the adapter configuration config = PeftConfig.from_pretrained("SamuelJaja/llama-3.1-8b-construction") # Load base model with quantization bnb_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto" ) # Load LoRA adapter model = PeftModel.from_pretrained(model, "SamuelJaja/llama-3.1-8b-construction") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) tokenizer.pad_token = tokenizer.eos_token # Generate text prompt = "[INST] What are the main requirements for fire safety in commercial buildings? [/INST]" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```