--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert-finetuned-gtzan](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2277 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.279 | 1.0 | 50 | 0.4636 | 0.88 | | 0.1597 | 2.0 | 100 | 0.3688 | 0.895 | | 0.0882 | 3.0 | 150 | 0.4473 | 0.88 | | 0.0486 | 4.0 | 200 | 0.5118 | 0.87 | | 0.0341 | 5.0 | 250 | 0.4274 | 0.895 | | 0.0058 | 6.0 | 300 | 0.5832 | 0.86 | | 0.0017 | 7.0 | 350 | 0.5238 | 0.9 | | 0.0004 | 8.0 | 400 | 0.6152 | 0.895 | | 0.0001 | 9.0 | 450 | 0.6718 | 0.915 | | 0.0 | 10.0 | 500 | 0.9763 | 0.875 | | 0.0 | 11.0 | 550 | 1.0753 | 0.885 | | 0.0 | 12.0 | 600 | 0.9361 | 0.905 | | 0.1016 | 13.0 | 650 | 1.1638 | 0.89 | | 0.0 | 14.0 | 700 | 1.1003 | 0.895 | | 0.0 | 15.0 | 750 | 1.0716 | 0.89 | | 0.0 | 16.0 | 800 | 1.1925 | 0.89 | | 0.0609 | 17.0 | 850 | 1.1557 | 0.89 | | 0.0 | 18.0 | 900 | 1.1128 | 0.89 | | 0.0 | 19.0 | 950 | 1.2144 | 0.89 | | 0.0 | 20.0 | 1000 | 1.2277 | 0.89 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0