Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,53 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
### Official implementation of PCME++ pre-trained model on CC3M, CC12M and RedCaps.
|
| 6 |
+
|
| 7 |
+
Zero-shot ImageNet-1k top-1 accuracy: 41.812% (with longer training iterations than the previous version)
|
| 8 |
+
|
| 9 |
+
- Paper: https://openreview.net/forum?id=ft1mr3WlGM
|
| 10 |
+
- GitHub: https://github.com/naver-ai/pcmepp
|
| 11 |
+
- Check the official version with ImageNet-1k top-1 accuracy 34.642% (mean-only ZS classification) at [SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps](https://huggingface.co/SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
import requests
|
| 16 |
+
from PIL import Image
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import CLIPProcessor
|
| 20 |
+
|
| 21 |
+
# Check hf_models code here: https://github.com/naver-ai/pcmepp/tree/main/hf_models
|
| 22 |
+
from hf_models import HfPCMEPPModel, tokenize
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
| 26 |
+
# IN-top1: 34.64%
|
| 27 |
+
# model = HfPCMEPPModel.from_pretrained("SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps")
|
| 28 |
+
# IN-top1: 41.81%
|
| 29 |
+
model = HfPCMEPPModel.from_pretrained("SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps-256M")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 33 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 34 |
+
inputs = processor(images=image, return_tensors="pt", padding=True)
|
| 35 |
+
texts = ["a photo of a cat", "a photo of a dog"]
|
| 36 |
+
texts = tokenize(texts)
|
| 37 |
+
|
| 38 |
+
outputs = model(images=inputs["pixel_values"], texts=texts)
|
| 39 |
+
print("Logits:", outputs["image_features"] @ outputs["text_features"].T)
|
| 40 |
+
print("Image uncertainty: ", torch.exp(outputs["image_stds"]).mean(dim=-1))
|
| 41 |
+
print("Text uncertainty: ", torch.exp(outputs["text_stds"]).mean(dim=-1))
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
```
|
| 45 |
+
@inproceedings{
|
| 46 |
+
chun2024pcmepp,
|
| 47 |
+
title={Improved Probabilistic Image-Text Representations},
|
| 48 |
+
author={Sanghyuk Chun},
|
| 49 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
| 50 |
+
year={2024},
|
| 51 |
+
url={https://openreview.net/forum?id=ft1mr3WlGM}
|
| 52 |
+
}
|
| 53 |
+
```
|