Sarah-h-h commited on
Commit
7fb38c1
·
verified ·
1 Parent(s): aeea84a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -3
README.md CHANGED
@@ -1,3 +1,82 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - open-source
8
+ - binary-classification
9
+ - sst-2
10
+ - distilbert
11
+ - sentiment-analysis
12
+ ---
13
+ # Model Card: Sentiment Classifier (DistilBERT - SST-2)
14
+
15
+ ## Overview
16
+ This model is a fine-tuned version of `distilbert-base-uncased` on the SST-2 dataset, designed for **binary sentiment classification**: labeling text as either *positive* or *negative*.
17
+
18
+ It’s fast, compact, and suitable for real-time inference tasks such as social media monitoring, customer feedback triage, and lightweight embedded NLP.
19
+
20
+ ---
21
+
22
+ ## Use Cases
23
+
24
+ - Detecting sentiment in tweets, reviews, or comments
25
+ - Routing customer support tickets by tone
26
+ - Analyzing product sentiment in e-commerce or app stores
27
+ - Monitoring brand perception over time
28
+
29
+ ---
30
+
31
+ ## Example
32
+
33
+ ```text
34
+ Input: "This new update is amazing — so much faster!"
35
+ Output: Positive
36
+
37
+ Input: "This feature is broken and support isn't helping."
38
+ Output: Negative
39
+
40
+ ---
41
+
42
+ ## Strengths
43
+
44
+ - Extremely lightweight: good for mobile and low-latency use
45
+ - Fine-tuned on a benchmark sentiment dataset (SST-2)
46
+ - Strong out-of-the-box performance for informal English
47
+
48
+ ---
49
+
50
+ ## Limitations
51
+
52
+ - Binary only (positive/negative) — no neutral or nuanced emotion
53
+ - Trained on English movie reviews — may misinterpret sarcasm, cultural tone, or domain-specific feedback
54
+ - Not ideal for clinical, legal, or safety-critical sentiment tasks
55
+
56
+ ---
57
+
58
+ ## Model Details
59
+
60
+ - Architecture: DistilBERT
61
+ - Base model: `distilbert-base-uncased`
62
+ - Fine-tuning dataset: SST-2 (Stanford Sentiment Treebank)
63
+ - Max input: 512 tokens
64
+ - Classes: `Positive`, `Negative`
65
+
66
+ ---
67
+
68
+ ## License
69
+
70
+ MIT License — free to use, adapt, and deploy commercially.
71
+
72
+ ---
73
+
74
+ ## Authorship Note
75
+
76
+ This model card was written by [Sarah Mancinho](https://huggingface.co/Sarah-h-h) as part of a public AI/LLM contribution series on Hugging Face.
77
+
78
+ Original model: [`distilbert-base-uncased-finetuned-sst-2-english`](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)
79
+
80
+ ---
81
+
82
+ ## Citation