--- library_name: transformers tags: - mlx - mlx-my-repo base_model: eleenakidangenb2b/gemma-Manager-Coaching-Finetune-test --- # Scotto2025/gemma-Manager-Coaching-Finetune-test-mlx-8Bit The Model [Scotto2025/gemma-Manager-Coaching-Finetune-test-mlx-8Bit](https://huggingface.co/Scotto2025/gemma-Manager-Coaching-Finetune-test-mlx-8Bit) was converted to MLX format from [eleenakidangenb2b/gemma-Manager-Coaching-Finetune-test](https://huggingface.co/eleenakidangenb2b/gemma-Manager-Coaching-Finetune-test) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Scotto2025/gemma-Manager-Coaching-Finetune-test-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```