Update README.md
Browse files
README.md
CHANGED
@@ -45,34 +45,63 @@ The model achieved the following performance on the test set:
|
|
45 |
|
46 |
## 🚀 Usage Example
|
47 |
|
|
|
48 |
```python
|
|
|
49 |
import pickle
|
50 |
-
import numpy as np
|
51 |
from tensorflow.keras.models import load_model
|
52 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
tokenizer = pickle.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
return labels[label]
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
aspect = "Servis"
|
75 |
-
print(f"Sentiment for '{aspect}': {predict_sentiment(sentence, aspect)}")
|
76 |
````
|
77 |
|
78 |
## 🏋️♀️ Training Details
|
|
|
45 |
|
46 |
## 🚀 Usage Example
|
47 |
|
48 |
+
Download model from HF
|
49 |
```python
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
import pickle
|
|
|
52 |
from tensorflow.keras.models import load_model
|
|
|
53 |
|
54 |
+
model_path = hf_hub_download(repo_id="Sengil/Turkish-ABSA-BiLSTM-Word2Vec", filename="absa_bilstm_model.keras")
|
55 |
+
tokenizer_path = hf_hub_download(repo_id="Sengil/Turkish-ABSA-BiLSTM-Word2Vec", filename="tokenizer.pkl")
|
56 |
+
|
57 |
+
# load model
|
58 |
+
model = load_model(model_path)
|
59 |
+
|
60 |
+
# load tokenizer
|
61 |
+
with open(tokenizer_path, "rb") as f:
|
62 |
tokenizer = pickle.load(f)
|
63 |
+
````
|
64 |
+
|
65 |
+
Input preprocessing
|
66 |
+
```python
|
67 |
+
import re
|
68 |
+
import nltk
|
69 |
+
nltk.download('punkt')
|
70 |
+
|
71 |
+
def preprocess_turkish(text):
|
72 |
+
text = text.lower()
|
73 |
+
text = re.sub(r"http\S+|www\S+|https\S+", "<url>", text)
|
74 |
+
text = re.sub(r"@\w+", "<user>", text)
|
75 |
+
text = re.sub(r"[^a-zA-Z0-9çğıöşüÇĞİÖŞÜ\s]", " ", text)
|
76 |
+
text = re.sub(r"(.)\1{2,}", r"\1\1", text)
|
77 |
+
text = re.sub(r"\s+", " ", text).strip()
|
78 |
+
return text
|
79 |
+
````
|
80 |
|
81 |
+
Predict the input
|
82 |
+
```python
|
83 |
+
import numpy as np
|
84 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
85 |
+
|
86 |
+
def predict_sentiment(sentence, aspect, max_len=84):
|
87 |
+
input_text = sentence + " [ASP] " + aspect
|
88 |
+
cleaned = preprocess_turkish(input_text)
|
89 |
+
tokenized = tokenizer.texts_to_sequences([cleaned])
|
90 |
+
padded = pad_sequences(tokenized, maxlen=max_len, padding='post')
|
91 |
+
|
92 |
+
pred = model.predict(padded)
|
93 |
+
label = np.argmax(pred)
|
94 |
+
labels = {0: "Negatif", 1: "Nötr", 2: "Pozitif"}
|
95 |
return labels[label]
|
96 |
+
````
|
97 |
+
|
98 |
+
run
|
99 |
+
```python
|
100 |
+
sentence = "Manzara sahane evet ama servis rezalet."
|
101 |
+
aspect = "manzara"
|
102 |
|
103 |
+
predict = predict_sentiment(sentence, aspect)
|
104 |
+
print("predict:", predict)
|
|
|
|
|
105 |
````
|
106 |
|
107 |
## 🏋️♀️ Training Details
|