Commit
·
92b3bd3
1
Parent(s):
feb2463
refactored inference.py
Browse files- inference.py +49 -20
inference.py
CHANGED
|
@@ -1,8 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
-
from fin_tinybert_pytorch import TinyFinBERTRegressor
|
| 4 |
|
| 5 |
-
# Load model
|
| 6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
model = TinyFinBERTRegressor()
|
| 8 |
model.load_state_dict(torch.load("./saved_model/pytorch_model.bin", map_location=device))
|
|
@@ -11,19 +38,24 @@ model.eval()
|
|
| 11 |
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("./saved_model")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
#
|
| 28 |
# if __name__ == "__main__":
|
| 29 |
# texts = [
|
|
@@ -32,8 +64,5 @@ def predict(texts):
|
|
| 32 |
# "There was no noticeable change in performance."
|
| 33 |
# ]
|
| 34 |
#
|
| 35 |
-
# predictions =
|
| 36 |
-
#
|
| 37 |
-
# print(f"Text: {pred['text']}")
|
| 38 |
-
# print(f"Score: {pred['score']:.3f}")
|
| 39 |
-
# print(f"Sentiment: {pred['sentiment']}\n")
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# from transformers import AutoTokenizer
|
| 3 |
+
# from fin_tinybert_pytorch import TinyFinBERTRegressor # You may need to rename or include this class here
|
| 4 |
+
#
|
| 5 |
+
# # Load model
|
| 6 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
# model = TinyFinBERTRegressor()
|
| 8 |
+
# model.load_state_dict(torch.load("./saved_model/pytorch_model.bin", map_location=device))
|
| 9 |
+
# model.to(device)
|
| 10 |
+
# model.eval()
|
| 11 |
+
#
|
| 12 |
+
# tokenizer = AutoTokenizer.from_pretrained("./saved_model")
|
| 13 |
+
#
|
| 14 |
+
# def predict(texts):
|
| 15 |
+
# if isinstance(texts, str):
|
| 16 |
+
# texts = [texts]
|
| 17 |
+
#
|
| 18 |
+
# results = []
|
| 19 |
+
# for text in texts:
|
| 20 |
+
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
|
| 21 |
+
# inputs = {k: v.to(device) for k, v in inputs.items() if k != "token_type_ids"}
|
| 22 |
+
# with torch.no_grad():
|
| 23 |
+
# score = model(**inputs)["score"].item()
|
| 24 |
+
# sentiment = "positive" if score > 0.3 else "negative" if score < -0.3 else "neutral"
|
| 25 |
+
# results.append({"text": text, "score": score, "sentiment": sentiment})
|
| 26 |
+
# return results
|
| 27 |
+
|
| 28 |
+
|
| 29 |
import torch
|
| 30 |
from transformers import AutoTokenizer
|
| 31 |
+
from fin_tinybert_pytorch import TinyFinBERTRegressor
|
| 32 |
|
|
|
|
| 33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 34 |
model = TinyFinBERTRegressor()
|
| 35 |
model.load_state_dict(torch.load("./saved_model/pytorch_model.bin", map_location=device))
|
|
|
|
| 38 |
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained("./saved_model")
|
| 40 |
|
| 41 |
+
|
| 42 |
+
def pipeline(text):
|
| 43 |
+
if not isinstance(text, str):
|
| 44 |
+
raise ValueError("Input must be a string")
|
| 45 |
+
|
| 46 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
|
| 47 |
+
inputs = {k: v.to(device) for k, v in inputs.items() if k != "token_type_ids"}
|
| 48 |
+
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
score = model(**inputs)["score"].item()
|
| 51 |
+
|
| 52 |
+
sentiment = "positive" if score > 0.3 else "negative" if score < -0.3 else "neutral"
|
| 53 |
+
|
| 54 |
+
return [{
|
| 55 |
+
"label": sentiment,
|
| 56 |
+
"score": round(score, 4)
|
| 57 |
+
}]
|
| 58 |
+
|
| 59 |
#
|
| 60 |
# if __name__ == "__main__":
|
| 61 |
# texts = [
|
|
|
|
| 64 |
# "There was no noticeable change in performance."
|
| 65 |
# ]
|
| 66 |
#
|
| 67 |
+
# predictions = pipeline("The stock price soared after the earnings report.")[0]
|
| 68 |
+
# print(f"sentiment: {predictions['label']}, score: {predictions['score']}")
|
|
|
|
|
|
|
|
|