|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Apriel model configuration""" |
|
|
|
import math |
|
from typing import Optional, Tuple |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import is_torch_available, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
def _compute_default_rope_parameters( |
|
config: Optional[PretrainedConfig] = None, |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
**rope_kwargs, |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies according to the original RoPE implementation |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). |
|
""" |
|
if config is not None and len(rope_kwargs) > 0: |
|
raise ValueError( |
|
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " |
|
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" |
|
) |
|
if len(rope_kwargs) > 0: |
|
base = rope_kwargs["base"] |
|
dim = rope_kwargs["dim"] |
|
elif config is not None: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
|
|
attention_factor = 1.0 |
|
|
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) |
|
return inv_freq, attention_factor |
|
|
|
def _compute_yarn_parameters( |
|
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies with NTK scaling. Please refer to the |
|
[original paper](https://arxiv.org/abs/2309.00071) |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin. |
|
""" |
|
|
|
if len(rope_kwargs) > 0: |
|
raise ValueError( |
|
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}" |
|
) |
|
|
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
|
|
|
|
max_position_embeddings = config.rope_scaling.get("original_max_position_embeddings", config.max_position_embeddings) |
|
factor = config.rope_scaling["factor"] |
|
|
|
|
|
attention_factor = config.rope_scaling.get("attention_factor") |
|
if attention_factor is None: |
|
attention_factor = 0.1 * math.log(factor) + 1.0 |
|
|
|
|
|
|
|
beta_fast = config.rope_scaling.get("beta_fast") or 32 |
|
beta_slow = config.rope_scaling.get("beta_slow") or 1 |
|
|
|
|
|
def find_correction_dim(num_rotations, dim, base, max_position_embeddings): |
|
"""Inverse dimension formula to find the dimension based on the number of rotations""" |
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) |
|
|
|
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings): |
|
"""Find dimension range bounds based on rotations""" |
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings)) |
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings)) |
|
return max(low, 0), min(high, dim - 1) |
|
|
|
def linear_ramp_factor(min, max, dim): |
|
if min == max: |
|
max += 0.001 |
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) |
|
ramp_func = torch.clamp(linear_func, 0, 1) |
|
return ramp_func |
|
|
|
|
|
|
|
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim) |
|
inv_freq_extrapolation = 1.0 / pos_freqs |
|
inv_freq_interpolation = 1.0 / (factor * pos_freqs) |
|
|
|
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings) |
|
|
|
|
|
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device) |
|
inv_freq = ( |
|
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor) |
|
+ inv_freq_extrapolation * inv_freq_extrapolation_factor |
|
) |
|
|
|
return inv_freq, attention_factor |
|
|
|
def _check_received_keys( |
|
rope_type: str, |
|
received_keys: set, |
|
required_keys: set, |
|
optional_keys: Optional[set] = None, |
|
ignore_keys: Optional[set] = None, |
|
): |
|
|
|
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys""" |
|
|
|
if "type" in received_keys: |
|
received_keys -= {"type"} |
|
required_keys.add("rope_type") |
|
|
|
|
|
if ignore_keys is not None: |
|
received_keys -= ignore_keys |
|
|
|
missing_keys = required_keys - received_keys |
|
if missing_keys: |
|
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}") |
|
|
|
if optional_keys is not None: |
|
unused_keys = received_keys - required_keys - optional_keys |
|
else: |
|
unused_keys = received_keys - required_keys |
|
if unused_keys: |
|
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}") |
|
|
|
|
|
def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys) |
|
|
|
def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "factor", "original_max_position_embeddings"} |
|
optional_keys = {"attention_factor", "beta_fast", "beta_slow"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys) |
|
|
|
factor = rope_scaling["factor"] |
|
if factor is None or not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
attention_factor = rope_scaling.get("attention_factor") |
|
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0): |
|
logger.warning( |
|
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" |
|
) |
|
beta_fast = rope_scaling.get("beta_fast") |
|
if beta_fast is not None and not isinstance(beta_fast, float): |
|
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}") |
|
beta_slow = rope_scaling.get("beta_slow") |
|
if beta_slow is not None and not isinstance(beta_slow, float): |
|
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}") |
|
|
|
if (beta_fast or 32) < (beta_slow or 1): |
|
logger.warning( |
|
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} " |
|
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)" |
|
) |
|
|
|
|
|
|
|
ROPE_INIT_FUNCTIONS = { |
|
"default": _compute_default_rope_parameters, |
|
"yarn": _compute_yarn_parameters, |
|
} |
|
|
|
|
|
ROPE_VALIDATION_FUNCTIONS = { |
|
"default": _validate_default_rope_parameters, |
|
"yarn": _validate_yarn_parameters, |
|
} |
|
|
|
def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None): |
|
""" |
|
Validate the RoPE config arguments, given a `PretrainedConfig` object |
|
""" |
|
rope_scaling = getattr(config, "rope_scaling", None) |
|
if rope_scaling is None: |
|
return |
|
|
|
|
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default")) |
|
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type) |
|
if validation_fn is not None: |
|
validation_fn(config, ignore_keys=ignore_keys) |
|
else: |
|
logger.warning( |
|
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'" |
|
) |
|
|
|
class AprielConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AprielModel`]. It is used to instantiate an Apriel |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the Apriel-5B-Base. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Apriel model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`AprielModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Apriel-5B-Base supports up to 16384 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
End of stream token id. |
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to |
|
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining |
|
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
accordingly. |
|
Expected contents: |
|
`rope_type` (`str`): |
|
The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation. |
|
`factor` (`float`, *optional*): |
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
original maximum pre-trained length. |
|
`original_max_position_embeddings` (`int`, *optional*): |
|
Used with 'yarn', 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
pretraining. |
|
`attention_factor` (`float`, *optional*): |
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
`factor` field to infer the suggested value. |
|
`beta_fast` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 32. |
|
`beta_slow` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 1. |
|
`short_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`long_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`low_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
`high_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
mlp_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. |
|
head_dim (`int`, *optional*): |
|
The attention head dimension. If None, it will default to hidden_size // num_attention_heads |
|
|
|
```python |
|
>>> from transformers import AprielModel, AprielConfig |
|
|
|
>>> # Initializing an Apriel Apriel-5B-Base style configuration |
|
>>> configuration = AprielConfig() |
|
|
|
>>> # Initializing a model from the Apriel-5B-Base style configuration |
|
>>> model = AprielModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "apriel" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
base_model_tp_plan = { |
|
"layers.*.self_attn.q_proj": "colwise", |
|
"layers.*.self_attn.k_proj": "colwise", |
|
"layers.*.self_attn.v_proj": "colwise", |
|
"layers.*.self_attn.o_proj": "rowwise", |
|
"layers.*.mlp.gate_proj": "colwise", |
|
"layers.*.mlp.up_proj": "colwise", |
|
"layers.*.mlp.down_proj": "rowwise", |
|
} |
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
mlp_bias=False, |
|
head_dim=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.mlp_bias = mlp_bias |
|
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads |
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
__all__ = ["AprielConfig"] |
|
|