update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: deberta-v3-large__sst2__train-16-9
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# deberta-v3-large__sst2__train-16-9
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2598
|
20 |
+
- Accuracy: 0.7809
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.6887 | 1.0 | 7 | 0.7452 | 0.2857 |
|
53 |
+
| 0.6889 | 2.0 | 14 | 0.7988 | 0.2857 |
|
54 |
+
| 0.6501 | 3.0 | 21 | 0.8987 | 0.2857 |
|
55 |
+
| 0.4286 | 4.0 | 28 | 0.9186 | 0.4286 |
|
56 |
+
| 0.3591 | 5.0 | 35 | 0.5566 | 0.7143 |
|
57 |
+
| 0.0339 | 6.0 | 42 | 1.1130 | 0.5714 |
|
58 |
+
| 0.013 | 7.0 | 49 | 1.8296 | 0.7143 |
|
59 |
+
| 0.0041 | 8.0 | 56 | 1.7069 | 0.7143 |
|
60 |
+
| 0.0023 | 9.0 | 63 | 1.1942 | 0.7143 |
|
61 |
+
| 0.0022 | 10.0 | 70 | 0.6054 | 0.7143 |
|
62 |
+
| 0.0011 | 11.0 | 77 | 0.3872 | 0.7143 |
|
63 |
+
| 0.0006 | 12.0 | 84 | 0.3217 | 0.7143 |
|
64 |
+
| 0.0005 | 13.0 | 91 | 0.2879 | 0.8571 |
|
65 |
+
| 0.0005 | 14.0 | 98 | 0.2640 | 0.8571 |
|
66 |
+
| 0.0004 | 15.0 | 105 | 0.2531 | 0.8571 |
|
67 |
+
| 0.0003 | 16.0 | 112 | 0.2384 | 0.8571 |
|
68 |
+
| 0.0004 | 17.0 | 119 | 0.2338 | 0.8571 |
|
69 |
+
| 0.0003 | 18.0 | 126 | 0.2314 | 0.8571 |
|
70 |
+
| 0.0003 | 19.0 | 133 | 0.2276 | 0.8571 |
|
71 |
+
| 0.0003 | 20.0 | 140 | 0.2172 | 0.8571 |
|
72 |
+
| 0.0003 | 21.0 | 147 | 0.2069 | 0.8571 |
|
73 |
+
| 0.0002 | 22.0 | 154 | 0.2018 | 0.8571 |
|
74 |
+
| 0.0002 | 23.0 | 161 | 0.2005 | 0.8571 |
|
75 |
+
| 0.0002 | 24.0 | 168 | 0.1985 | 0.8571 |
|
76 |
+
| 0.0002 | 25.0 | 175 | 0.1985 | 1.0 |
|
77 |
+
| 0.0002 | 26.0 | 182 | 0.1955 | 1.0 |
|
78 |
+
| 0.0002 | 27.0 | 189 | 0.1967 | 1.0 |
|
79 |
+
| 0.0002 | 28.0 | 196 | 0.1918 | 1.0 |
|
80 |
+
| 0.0002 | 29.0 | 203 | 0.1888 | 1.0 |
|
81 |
+
| 0.0002 | 30.0 | 210 | 0.1864 | 1.0 |
|
82 |
+
| 0.0002 | 31.0 | 217 | 0.1870 | 1.0 |
|
83 |
+
| 0.0002 | 32.0 | 224 | 0.1892 | 1.0 |
|
84 |
+
| 0.0002 | 33.0 | 231 | 0.1917 | 1.0 |
|
85 |
+
| 0.0002 | 34.0 | 238 | 0.1869 | 1.0 |
|
86 |
+
| 0.0002 | 35.0 | 245 | 0.1812 | 1.0 |
|
87 |
+
| 0.0001 | 36.0 | 252 | 0.1777 | 1.0 |
|
88 |
+
| 0.0002 | 37.0 | 259 | 0.1798 | 1.0 |
|
89 |
+
| 0.0002 | 38.0 | 266 | 0.1824 | 0.8571 |
|
90 |
+
| 0.0002 | 39.0 | 273 | 0.1846 | 0.8571 |
|
91 |
+
| 0.0002 | 40.0 | 280 | 0.1839 | 0.8571 |
|
92 |
+
| 0.0001 | 41.0 | 287 | 0.1826 | 0.8571 |
|
93 |
+
| 0.0001 | 42.0 | 294 | 0.1779 | 0.8571 |
|
94 |
+
| 0.0002 | 43.0 | 301 | 0.1762 | 0.8571 |
|
95 |
+
| 0.0001 | 44.0 | 308 | 0.1742 | 1.0 |
|
96 |
+
| 0.0002 | 45.0 | 315 | 0.1708 | 1.0 |
|
97 |
+
| 0.0001 | 46.0 | 322 | 0.1702 | 1.0 |
|
98 |
+
| 0.0001 | 47.0 | 329 | 0.1699 | 1.0 |
|
99 |
+
| 0.0001 | 48.0 | 336 | 0.1695 | 1.0 |
|
100 |
+
| 0.0001 | 49.0 | 343 | 0.1683 | 1.0 |
|
101 |
+
| 0.0001 | 50.0 | 350 | 0.1681 | 1.0 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.15.0
|
107 |
+
- Pytorch 1.10.2+cu102
|
108 |
+
- Datasets 1.18.2
|
109 |
+
- Tokenizers 0.10.3
|