Model save
Browse files
README.md
CHANGED
@@ -3,6 +3,11 @@ license: mit
|
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
6 |
model-index:
|
7 |
- name: roberta-base-finetuned-ner
|
8 |
results: []
|
@@ -14,6 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
# roberta-base-finetuned-ner
|
15 |
|
16 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
@@ -40,6 +51,36 @@ The following hyperparameters were used during training:
|
|
40 |
- lr_scheduler_type: linear
|
41 |
- num_epochs: 6
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
### Framework versions
|
44 |
|
45 |
- Transformers 4.36.2
|
|
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
model-index:
|
12 |
- name: roberta-base-finetuned-ner
|
13 |
results: []
|
|
|
19 |
# roberta-base-finetuned-ner
|
20 |
|
21 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1424
|
24 |
+
- Precision: 0.9657
|
25 |
+
- Recall: 0.9608
|
26 |
+
- F1: 0.9633
|
27 |
+
- Accuracy: 0.9594
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
51 |
- lr_scheduler_type: linear
|
52 |
- num_epochs: 6
|
53 |
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.1562 | 0.25 | 7000 | 0.1457 | 0.9547 | 0.9376 | 0.9460 | 0.9407 |
|
59 |
+
| 0.1375 | 0.5 | 14000 | 0.1472 | 0.9569 | 0.9414 | 0.9491 | 0.9442 |
|
60 |
+
| 0.1371 | 0.75 | 21000 | 0.1331 | 0.9570 | 0.9480 | 0.9524 | 0.9482 |
|
61 |
+
| 0.1325 | 0.99 | 28000 | 0.1216 | 0.9603 | 0.9487 | 0.9545 | 0.9501 |
|
62 |
+
| 0.1176 | 1.24 | 35000 | 0.1307 | 0.9617 | 0.9468 | 0.9542 | 0.9496 |
|
63 |
+
| 0.1191 | 1.49 | 42000 | 0.1230 | 0.9596 | 0.9521 | 0.9558 | 0.9516 |
|
64 |
+
| 0.116 | 1.74 | 49000 | 0.1341 | 0.9634 | 0.9510 | 0.9572 | 0.9528 |
|
65 |
+
| 0.1136 | 1.99 | 56000 | 0.1179 | 0.9582 | 0.9560 | 0.9571 | 0.9527 |
|
66 |
+
| 0.0947 | 2.24 | 63000 | 0.1426 | 0.9560 | 0.9544 | 0.9552 | 0.9512 |
|
67 |
+
| 0.1009 | 2.49 | 70000 | 0.1155 | 0.9644 | 0.9549 | 0.9596 | 0.9556 |
|
68 |
+
| 0.0972 | 2.73 | 77000 | 0.1282 | 0.9654 | 0.9543 | 0.9598 | 0.9556 |
|
69 |
+
| 0.0959 | 2.98 | 84000 | 0.1216 | 0.9642 | 0.9566 | 0.9603 | 0.9564 |
|
70 |
+
| 0.0847 | 3.23 | 91000 | 0.1222 | 0.9645 | 0.9580 | 0.9612 | 0.9573 |
|
71 |
+
| 0.0817 | 3.48 | 98000 | 0.1275 | 0.9648 | 0.9575 | 0.9611 | 0.9571 |
|
72 |
+
| 0.089 | 3.73 | 105000 | 0.1260 | 0.9661 | 0.9577 | 0.9619 | 0.9580 |
|
73 |
+
| 0.0826 | 3.98 | 112000 | 0.1188 | 0.9641 | 0.9593 | 0.9617 | 0.9577 |
|
74 |
+
| 0.072 | 4.23 | 119000 | 0.1361 | 0.9645 | 0.9598 | 0.9621 | 0.9581 |
|
75 |
+
| 0.0648 | 4.47 | 126000 | 0.1377 | 0.9640 | 0.9601 | 0.9620 | 0.9581 |
|
76 |
+
| 0.0665 | 4.72 | 133000 | 0.1352 | 0.9655 | 0.9596 | 0.9625 | 0.9586 |
|
77 |
+
| 0.0692 | 4.97 | 140000 | 0.1392 | 0.9668 | 0.9593 | 0.9631 | 0.9593 |
|
78 |
+
| 0.0545 | 5.22 | 147000 | 0.1470 | 0.9663 | 0.9602 | 0.9633 | 0.9595 |
|
79 |
+
| 0.0549 | 5.47 | 154000 | 0.1442 | 0.9652 | 0.9611 | 0.9631 | 0.9593 |
|
80 |
+
| 0.0563 | 5.72 | 161000 | 0.1454 | 0.9657 | 0.9609 | 0.9633 | 0.9594 |
|
81 |
+
| 0.0647 | 5.97 | 168000 | 0.1424 | 0.9657 | 0.9608 | 0.9633 | 0.9594 |
|
82 |
+
|
83 |
+
|
84 |
### Framework versions
|
85 |
|
86 |
- Transformers 4.36.2
|