--- base_model: ybelkada/flan-t5-xl-sharded-bf16 tags: - generated_from_trainer model-index: - name: flan-t5-xl-absa-multitask-rest results: [] --- # flan-t5-xl-absa-multitask-rest This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co/ybelkada/flan-t5-xl-sharded-bf16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.346 | 0.32 | 200 | 3.4570 | | 1.5615 | 0.63 | 400 | 0.5494 | | 0.5001 | 0.95 | 600 | 0.3109 | | 0.3495 | 1.27 | 800 | 0.2476 | | 0.2841 | 1.58 | 1000 | 0.2129 | | 0.2602 | 1.9 | 1200 | 0.1858 | | 0.2273 | 2.22 | 1400 | 0.1740 | | 0.2095 | 2.53 | 1600 | 0.1641 | | 0.2024 | 2.85 | 1800 | 0.1547 | | 0.1981 | 3.16 | 2000 | 0.1554 | | 0.1816 | 3.48 | 2200 | 0.1493 | | 0.1749 | 3.8 | 2400 | 0.1407 | | 0.1668 | 4.11 | 2600 | 0.1358 | | 0.156 | 4.43 | 2800 | 0.1420 | | 0.1581 | 4.75 | 3000 | 0.1336 | | 0.1525 | 5.06 | 3200 | 0.1266 | | 0.1391 | 5.38 | 3400 | 0.1277 | | 0.1477 | 5.7 | 3600 | 0.1215 | | 0.1418 | 6.01 | 3800 | 0.1193 | | 0.1355 | 6.33 | 4000 | 0.1216 | | 0.1261 | 6.65 | 4200 | 0.1225 | | 0.1298 | 6.96 | 4400 | 0.1181 | | 0.1266 | 7.28 | 4600 | 0.1168 | | 0.1215 | 7.59 | 4800 | 0.1158 | | 0.132 | 7.91 | 5000 | 0.1162 | | 0.1178 | 8.23 | 5200 | 0.1118 | | 0.1194 | 8.54 | 5400 | 0.1123 | | 0.1192 | 8.86 | 5600 | 0.1081 | | 0.1116 | 9.18 | 5800 | 0.1070 | | 0.1204 | 9.49 | 6000 | 0.1064 | | 0.11 | 9.81 | 6200 | 0.1094 | | 0.1132 | 10.13 | 6400 | 0.1064 | | 0.1134 | 10.44 | 6600 | 0.1036 | | 0.1065 | 10.76 | 6800 | 0.1043 | | 0.1003 | 11.08 | 7000 | 0.1046 | | 0.1119 | 11.39 | 7200 | 0.1044 | | 0.1082 | 11.71 | 7400 | 0.1038 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2