File size: 2,972 Bytes
4e9b83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77bd05e
4e9b83d
263401d
4e9b83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7049a80
4e9b83d
 
 
 
 
 
263401d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9b83d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: other
base_model: baffo32/decapoda-research-llama-7B-hf
tags:
- generated_from_trainer
model-index:
- name: llama-7b-absa-MT-laptops
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama-7b-absa-MT-laptops

This model is a fine-tuned version of [baffo32/decapoda-research-llama-7B-hf](https://huggingface.co/baffo32/decapoda-research-llama-7B-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 1200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0853        | 0.13  | 40   | 0.0270          |
| 0.0209        | 0.25  | 80   | 0.0205          |
| 0.017         | 0.38  | 120  | 0.0178          |
| 0.016         | 0.51  | 160  | 0.0157          |
| 0.0129        | 0.63  | 200  | 0.0140          |
| 0.0129        | 0.76  | 240  | 0.0118          |
| 0.0108        | 0.89  | 280  | 0.0115          |
| 0.009         | 1.01  | 320  | 0.0107          |
| 0.0052        | 1.14  | 360  | 0.0087          |
| 0.0054        | 1.26  | 400  | 0.0074          |
| 0.0046        | 1.39  | 440  | 0.0087          |
| 0.005         | 1.52  | 480  | 0.0074          |
| 0.0043        | 1.64  | 520  | 0.0061          |
| 0.0035        | 1.77  | 560  | 0.0056          |
| 0.003         | 1.9   | 600  | 0.0053          |
| 0.0026        | 2.02  | 640  | 0.0049          |
| 0.0021        | 2.15  | 680  | 0.0052          |
| 0.0027        | 2.28  | 720  | 0.0047          |
| 0.0015        | 2.4   | 760  | 0.0044          |
| 0.0013        | 2.53  | 800  | 0.0043          |
| 0.0009        | 2.66  | 840  | 0.0042          |
| 0.001         | 2.78  | 880  | 0.0039          |
| 0.0008        | 2.91  | 920  | 0.0036          |
| 0.0005        | 3.04  | 960  | 0.0036          |
| 0.0006        | 3.16  | 1000 | 0.0039          |
| 0.0005        | 3.29  | 1040 | 0.0033          |
| 0.0002        | 3.42  | 1080 | 0.0032          |
| 0.0002        | 3.54  | 1120 | 0.0033          |
| 0.0002        | 3.67  | 1160 | 0.0031          |
| 0.0002        | 3.79  | 1200 | 0.0032          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2