File size: 1,656 Bytes
341d59b c994ca6 cf78931 7ff63df cf78931 c994ca6 74a41ce c994ca6 74a41ce c994ca6 74a41ce c994ca6 74a41ce c994ca6 74a41ce 340f382 74a41ce c994ca6 74a41ce c994ca6 74a41ce c994ca6 74a41ce c994ca6 cf78931 c994ca6 cf78931 c994ca6 74a41ce cf78931 74a41ce cf78931 74a41ce cf78931 74a41ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
library_name: transformers
language: ar
pipeline_tag: text-classification
tags:
- text-classification
- intent-classification
- marbert
- egyptian-arabic
- nlu
- e-commerce
- customer-service
license: apache-2.0
---
# 🌍 MARBERT for Egyptian Dialect Intent Classification (syplyd-marbert-v1)
This is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2), specifically adapted for **intent classification** in **Egyptian Colloquial Arabic**, with a primary focus on **e-commerce** and **customer service** scenarios.
It enables accurate understanding of user queries in dialectal Arabic, empowering applications like chatbots, support assistants, and ticket routing systems.
---
## 🧠 Model Details
- **Model Type**: `bert-for-sequence-classification`
- **Base Model**: [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2)
- **Language**: Arabic (Egyptian dialect)
- **Developer**: Shaza Aly
- **License**: Apache 2.0
- **Repository**: [https://huggingface.co/ShazaAly/syplyd-marbert-1](https://huggingface.co/ShazaAly/syplyd-marbert-1)
---
## 🚀 Usage
This model can be used directly with the Hugging Face `transformers` library:
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="ShazaAly/syplyd-marbert-1")
# Example 1
text_1 = "عايز أعرف الأوردر بتاعي هيوصل امتى؟"
print(classifier(text_1))
# Output: [{'label': 'track_order_status', 'score': ...}]
# Example 2
text_2 = "المنتج ده غالي، فيه بديل أرخص؟"
print(classifier(text_2))
# Output: [{'label': 'product_alternatives', 'score': ...}]
|