File size: 1,656 Bytes
341d59b
c994ca6
cf78931
 
 
7ff63df
 
 
 
 
 
 
cf78931
c994ca6
 
74a41ce
c994ca6
74a41ce
c994ca6
74a41ce
c994ca6
74a41ce
c994ca6
74a41ce
340f382
74a41ce
 
 
 
 
 
c994ca6
74a41ce
c994ca6
74a41ce
c994ca6
74a41ce
c994ca6
cf78931
 
c994ca6
cf78931
c994ca6
74a41ce
cf78931
74a41ce
 
cf78931
74a41ce
cf78931
74a41ce
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
library_name: transformers
language: ar
pipeline_tag: text-classification
tags:
- text-classification
- intent-classification
- marbert
- egyptian-arabic
- nlu
- e-commerce
- customer-service
license: apache-2.0
---

# 🌍 MARBERT for Egyptian Dialect Intent Classification (syplyd-marbert-v1)

This is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2), specifically adapted for **intent classification** in **Egyptian Colloquial Arabic**, with a primary focus on **e-commerce** and **customer service** scenarios.

It enables accurate understanding of user queries in dialectal Arabic, empowering applications like chatbots, support assistants, and ticket routing systems.

---

## 🧠 Model Details

- **Model Type**: `bert-for-sequence-classification`
- **Base Model**: [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2)
- **Language**: Arabic (Egyptian dialect)
- **Developer**: Shaza Aly
- **License**: Apache 2.0
- **Repository**: [https://huggingface.co/ShazaAly/syplyd-marbert-1](https://huggingface.co/ShazaAly/syplyd-marbert-1)

---

## 🚀 Usage

This model can be used directly with the Hugging Face `transformers` library:

```python
from transformers import pipeline

classifier = pipeline("text-classification", model="ShazaAly/syplyd-marbert-1")

# Example 1
text_1 = "عايز أعرف الأوردر بتاعي هيوصل امتى؟"
print(classifier(text_1))
# Output: [{'label': 'track_order_status', 'score': ...}]

# Example 2
text_2 = "المنتج ده غالي، فيه بديل أرخص؟"
print(classifier(text_2))
# Output: [{'label': 'product_alternatives', 'score': ...}]