--- library_name: transformers language: ar pipeline_tag: text-classification tags: - text-classification - intent-classification - marbert - egyptian-arabic - nlu - e-commerce - customer-service license: apache-2.0 --- # 🌍 MARBERT for Egyptian Dialect Intent Classification (syplyd-marbert-v1) This is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2), specifically adapted for **intent classification** in **Egyptian Colloquial Arabic**, with a primary focus on **e-commerce** and **customer service** scenarios. It enables accurate understanding of user queries in dialectal Arabic, empowering applications like chatbots, support assistants, and ticket routing systems. --- ## 🧠 Model Details - **Model Type**: `bert-for-sequence-classification` - **Base Model**: [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) - **Language**: Arabic (Egyptian dialect) - **Developer**: Shaza Aly - **License**: Apache 2.0 - **Repository**: [https://huggingface.co/ShazaAly/syplyd-marbert-1](https://huggingface.co/ShazaAly/syplyd-marbert-1) --- ## 🚀 Usage This model can be used directly with the Hugging Face `transformers` library: ```python from transformers import pipeline classifier = pipeline("text-classification", model="ShazaAly/syplyd-marbert-1") # Example 1 text_1 = "عايز أعرف الأوردر بتاعي هيوصل امتى؟" print(classifier(text_1)) # Output: [{'label': 'track_order_status', 'score': ...}] # Example 2 text_2 = "المنتج ده غالي، فيه بديل أرخص؟" print(classifier(text_2)) # Output: [{'label': 'product_alternatives', 'score': ...}]