--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0636 - Precision: 0.9456 - Recall: 0.9512 - F1: 0.9484 - Accuracy: 0.9912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0028 | 1.0 | 1756 | 0.0706 | 0.9392 | 0.9482 | 0.9436 | 0.9907 | | 0.0092 | 2.0 | 3512 | 0.0666 | 0.9453 | 0.9490 | 0.9472 | 0.9909 | | 0.0021 | 3.0 | 5268 | 0.0636 | 0.9456 | 0.9512 | 0.9484 | 0.9912 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4