Shinapri commited on
Commit
714a457
·
verified ·
1 Parent(s): 118c9c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -50
README.md CHANGED
@@ -3,10 +3,10 @@ license: mit
3
  language:
4
  - en
5
  base_model:
6
- - Shinapri/Matellem-Gemma3n-E4B-Graphene-1.0
7
  pipeline_tag: question-answering
8
  ---
9
- # Matellem-Gemma3n-E4B-Graphene-v1.0
10
 
11
  A fine-tuned language model, part of the **Matellem** project, specialized for multi-task analysis of scientific literature in the field of graphene research.
12
 
@@ -38,54 +38,6 @@ This model is designed to perform a variety of tasks related to scientific liter
38
  * **Information Extraction:** Identifying and extracting specific data points, such as material properties, numerical values, or synthesis methods, from unstructured text.
39
  * **Semantic Retrieval:** Understanding the core concepts of a research paper, enabling the identification of relevant literature from natural language descriptions.
40
 
41
- -----
42
-
43
- ## How to Use
44
-
45
- ```python
46
- from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
47
- import torch
48
-
49
- model_id = "Quit2003/Matellem-Gemma3n-E4B-Graphene-1.0"
50
-
51
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto").eval()
52
- tokenizer = AutoTokenizer.from_pretrained(model_id)
53
-
54
- INSTRUCTION = "You are a scientific literature search expert. Your task is to identify the title of a research paper based on a user's description of its key methods and findings."
55
- USER_INPUT = """I'm looking for a paper about manipulating graphene plasmons.
56
- The key method involved using a ferroelectric nanocavity array to create a periodic doping pattern on the graphene.
57
- I remember they could tune the plasmon resonance by dynamically changing the applied gate voltage. Can you identify the title?"""
58
-
59
- messages = [
60
- {"role": "system", "content": [{"type": "text", "text": INSTRUCTION}]},
61
- {"role": "user", "content": [{"type": "text", "text": USER_INPUT}]},
62
- ]
63
-
64
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
65
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
66
-
67
- streamer = TextStreamer(tokenizer, skip_prompt=True)
68
-
69
- with torch.no_grad():
70
- _ = model.generate(
71
- **inputs,
72
- streamer=streamer,
73
- do_sample=True,
74
- max_new_tokens=1024,
75
- top_p=0.9,
76
- temperature=0.7
77
- )
78
- ```
79
-
80
- **Example Output & Evaluation Note:**
81
-
82
- The model's response for this query is highly relevant:
83
-
84
- > The title of the paper is likely: **"Voltage-tunable plasmonics on few-layer graphene based on a ferroelectric nanocavity array"**
85
-
86
- For reference, the original paper's title is **"Tunable plasmonic devices by integrating graphene with ferroelectric nanocavity"**. A cosine similarity score of **0.9638** was obtained when comparing the embeddings of these two titles using the `intfloat/e5-large` model.
87
- -----
88
-
89
  ## Authorship & Contact
90
 
91
  – **Model processed by:** Shinapri
 
3
  language:
4
  - en
5
  base_model:
6
+ - Shinapri/Matellem-Gemma3n-E4B-Graphene-1
7
  pipeline_tag: question-answering
8
  ---
9
+ # Matellem-Gemma3n-E4B-Graphene-1-gguf
10
 
11
  A fine-tuned language model, part of the **Matellem** project, specialized for multi-task analysis of scientific literature in the field of graphene research.
12
 
 
38
  * **Information Extraction:** Identifying and extracting specific data points, such as material properties, numerical values, or synthesis methods, from unstructured text.
39
  * **Semantic Retrieval:** Understanding the core concepts of a research paper, enabling the identification of relevant literature from natural language descriptions.
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  ## Authorship & Contact
42
 
43
  – **Model processed by:** Shinapri