ShirinYamani
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -32,9 +32,77 @@ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggin
|
|
32 |
|
33 |
Please refer to [this notebook](https://github.com/shirinyamani/mistral7b-lora-finetuning/blob/main/misral_7B_updated.ipynb) for a complete demo including notes regarding cloud deployment
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
-
|
38 |
- learning_rate: 0.0002
|
39 |
- train_batch_size: 1
|
40 |
- eval_batch_size: 8
|
@@ -46,12 +114,13 @@ The following hyperparameters were used during training:
|
|
46 |
- lr_scheduler_warmup_steps: 2
|
47 |
- training_steps: 10
|
48 |
- mixed_precision_training: Native AMP
|
49 |
-
|
50 |
|
51 |
### Framework versions
|
52 |
-
|
53 |
- PEFT 0.11.2.dev0
|
54 |
- Transformers 4.42.0.dev0
|
55 |
- Pytorch 2.3.0+cu121
|
56 |
- Datasets 2.19.2
|
57 |
-
- Tokenizers 0.19.1
|
|
|
|
32 |
|
33 |
Please refer to [this notebook](https://github.com/shirinyamani/mistral7b-lora-finetuning/blob/main/misral_7B_updated.ipynb) for a complete demo including notes regarding cloud deployment
|
34 |
|
35 |
+
## Inference
|
36 |
+
|
37 |
+
```python
|
38 |
+
import os
|
39 |
+
from os.path import exists, join, isdir
|
40 |
+
import torch
|
41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
|
42 |
+
from peft import PeftModel
|
43 |
+
from peft.tuners.lora import LoraLayer
|
44 |
+
|
45 |
+
# Update variables!
|
46 |
+
max_new_tokens = 100
|
47 |
+
top_p = 0.9
|
48 |
+
temperature=0.7
|
49 |
+
user_question = "What is central limit theorem?"
|
50 |
+
|
51 |
+
# Base model
|
52 |
+
model_name_or_path = 'mistralai/Mistral-7B-v0.1' # Change it to 'YOUR_BASE_MODEL'
|
53 |
+
adapter_path = 'ShirinYamani/mistral7b-fine-tuned-qlora' # Change it to 'YOUR_ADAPTER_PATH'
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
56 |
+
# if you wanna use LLaMA HF then fix the early conversion issues.
|
57 |
+
tokenizer.bos_token_id = 1
|
58 |
+
|
59 |
+
# Load the model (use bf16 for faster inference)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
61 |
+
model_name_or_path,
|
62 |
+
torch_dtype=torch.bfloat16,
|
63 |
+
device_map={"": 0},
|
64 |
+
# Qlora -- 4-bit config
|
65 |
+
quantization_config=BitsAndBytesConfig(
|
66 |
+
load_in_4bit=True,
|
67 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
68 |
+
bnb_4bit_use_double_quant=True,
|
69 |
+
bnb_4bit_quant_type='nf4',
|
70 |
+
)
|
71 |
+
)
|
72 |
+
|
73 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
74 |
+
model.eval()
|
75 |
+
|
76 |
+
prompt = (
|
77 |
+
"A chat between a curious human and an artificial intelligence assistant. "
|
78 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
79 |
+
"### Human: {user_question}"
|
80 |
+
"### Assistant: "
|
81 |
+
)
|
82 |
+
|
83 |
+
def generate(model, user_question, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature):
|
84 |
+
inputs = tokenizer(prompt.format(user_question=user_question), return_tensors="pt").to('cuda')
|
85 |
+
|
86 |
+
outputs = model.generate(
|
87 |
+
**inputs,
|
88 |
+
generation_config=GenerationConfig(
|
89 |
+
do_sample=True,
|
90 |
+
max_new_tokens=max_new_tokens,
|
91 |
+
top_p=top_p,
|
92 |
+
temperature=temperature,
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
97 |
+
print(text)
|
98 |
+
return text
|
99 |
+
|
100 |
+
generate(model, user_question)
|
101 |
+
```
|
102 |
+
|
103 |
### Training hyperparameters
|
104 |
|
105 |
+
```python
|
106 |
- learning_rate: 0.0002
|
107 |
- train_batch_size: 1
|
108 |
- eval_batch_size: 8
|
|
|
114 |
- lr_scheduler_warmup_steps: 2
|
115 |
- training_steps: 10
|
116 |
- mixed_precision_training: Native AMP
|
117 |
+
```
|
118 |
|
119 |
### Framework versions
|
120 |
+
```python
|
121 |
- PEFT 0.11.2.dev0
|
122 |
- Transformers 4.42.0.dev0
|
123 |
- Pytorch 2.3.0+cu121
|
124 |
- Datasets 2.19.2
|
125 |
+
- Tokenizers 0.19.1
|
126 |
+
```
|