Shivus commited on
Commit
d25ea2b
1 Parent(s): f8d34fc

Initial commit

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1081.53 +/- 144.70
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eedfffc0ab10c995155e60b47344d64b9e81aba3acfcd4355f6893b89a7725e9
3
+ size 129193
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa98ec01050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa98ec010e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa98ec01170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa98ec01200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa98ec01290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa98ec01320>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa98ec013b0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa98ec01440>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa98ec014d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa98ec01560>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa98ec015f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa98ec55630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1662232033.6530237,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA86jYPhSHz74mlLQ+1sEdQPRCyr50cvO/4F4QvzE0T744jEu/UE+wPwzYp74ewCq84AuGP67WzL5lU4A+Omy+Py2DNz8I+Si/7bqYv9KNsr81ujS+ZblVv7ZksT8e4ps/VKL/v9vToD5YQyE/SZ9SP9pFSz8sgSu/MvP+PaglWj/QAMq/U0rTP0DxwL7CoBK/kra0v1FrjL7dE1g/Ag3QPAwBUT+13v+/lDr+PpcKf7+3Rwo+glfyvxCTRr/F6Ae/BOJdPeo8Xr3E0Qk/d7m2v+cuAD/b06A+WEMhP76Tm7+Ra5I/y2qzv223qb/WLso+Vx4Mv/O1BDwEAOm+udPgPUc1Kr89E48/V3QuPi6VJ7/1K7w/ggX+P6xSdL/6IbW9n+vJv18qfz8UghPAxYUcPoGSN0DO6IA7jRN9v2UBRcDnLgA/29OgPlhDIT++k5u/p3KoP2myKL9Zwgo+Y5kdP41Nsb9+TqY/Z757v9Dx5b5iaCq/MwTdPzuwAT9Rfxc9q9ahP57hKz/xPp28uq/2Pl50078wzkA9316Uv6neqT6YNARATrcCQE8VhL/wHjLA5y4AP9vToD5YQyE/vpObv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAGQrlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLgWA9AAAAAP6k878AAAAAUXetPQAAAACFzeQ/AAAAAEoe7T0AAAAApsHjPwAAAAAvckK9AAAAABIf3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxEpu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzIL3PQAAAAAlLOa/AAAAAOeHsr0AAAAA0cbfPwAAAABv2KY9AAAAAOkV6D8AAAAAXKCcPQAAAADVmea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAELcbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBkCXL0AAAAAoW3xvwAAAADnv808AAAAAIcg9z8AAAAAo+oTvAAAAACnWPE/AAAAAKmj97wAAAAA2wAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnYzTMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAM7go8AAAAACzZ578AAAAAG1y2vQAAAACOWeM/AAAAAESXNj0AAAAAdZPlPwAAAACb7mO9AAAAAAA/778AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFNXHaN+9eMAWyUTegDjAF0lEdAqTkGZZ0Sy3V9lChoBkdAk0T9MXaakWgHTegDaAhHQKk+WiJwbVB1fZQoaAZHQJIrOoqCpWFoB03oA2gIR0CpPsXrleWwdX2UKGgGR0CST2DWsijdaAdN6ANoCEdAqT7Imois4nV9lChoBkdAkCXYw7DEWWgHTegDaAhHQKlGO7e2uxN1fZQoaAZHQI1BqZOSGJxoB03oA2gIR0CpS4hVU+9rdX2UKGgGR0CQmFlbNbC8aAdN6ANoCEdAqUv+2iL2pXV9lChoBkdAkFFFuaWonGgHTegDaAhHQKlMAYyfthN1fZQoaAZHQI3b+EPDpC9oB03oA2gIR0CpU/VGkN4JdX2UKGgGR0CIg40jTrmhaAdN6ANoCEdAqVmtEy+HrXV9lChoBkdAhwMnJkoWpWgHTegDaAhHQKlaHSThYNl1fZQoaAZHQIRfuenQ6ZJoB03oA2gIR0CpWiABLf1pdX2UKGgGR0CNsNt3wCr+aAdN6ANoCEdAqWHWmHgxanV9lChoBkdAhiSBInSfDmgHTegDaAhHQKlnbppN9IB1fZQoaAZHQIXvmw5eZ5RoB03oA2gIR0CpZ9yzHCGfdX2UKGgGR0CIjnTUiILxaAdN6ANoCEdAqWffggow23V9lChoBkdAhUlVT72tdWgHTegDaAhHQKlvoLrHEMt1fZQoaAZHQIl9YnDziCJoB03oA2gIR0CpdSPexfOVdX2UKGgGR0CM7BO58Sf2aAdN6ANoCEdAqXWRpg1FY3V9lChoBkdAiJgR/3Fkx2gHTegDaAhHQKl1lKzzErJ1fZQoaAZHQINmkdzXBgxoB03oA2gIR0CpfT7F85S4dX2UKGgGR0Bxv0eRxLkCaAdN6ANoCEdAqYKvaYeDF3V9lChoBkdAhuP6uGKyfWgHTegDaAhHQKmDI3AmAsl1fZQoaAZHQIRHHthNM49oB03oA2gIR0CpgyZNGmUGdX2UKGgGR0CJOFzwtrbhaAdN6ANoCEdAqYqwvL5h0HV9lChoBkdAh+1hj4Hoo2gHTegDaAhHQKmQLPi1iON1fZQoaAZHQI4TwsXizcBoB03oA2gIR0CpkJ5xR2r5dX2UKGgGR0CBo0b5uZTiaAdN6ANoCEdAqZChYHPeHnV9lChoBkdAi9uxYJVsDWgHTegDaAhHQKmYYWac7Qt1fZQoaAZHQJAcE2xY7q9oB03oA2gIR0CpneomgJ1JdX2UKGgGR0CGS+oBJZntaAdN6ANoCEdAqZ5XT7VJ+XV9lChoBkdAiNx4BNmDlGgHTegDaAhHQKmeWiL2pQ11fZQoaAZHQI4roxagVXVoB03oA2gIR0Cpphmxlg+hdX2UKGgGR0CN+a6mwaBJaAdN6ANoCEdAqauPUtqYZ3V9lChoBkdAjKCtlqagEmgHTegDaAhHQKmr+wC8vmJ1fZQoaAZHQJCB0XWOIZZoB03oA2gIR0Cpq/3iaRZEdX2UKGgGR0CM35nvlU6xaAdN6ANoCEdAqbORcPe54HV9lChoBkdAidDUfHPu5WgHTegDaAhHQKm46k0Jng51fZQoaAZHQIuaBG+bmU5oB03oA2gIR0CpuVgmqo60dX2UKGgGR0CPEGXKKYReaAdN6ANoCEdAqblb8k2P1nV9lChoBkdAkt0anFYMfGgHTegDaAhHQKnA66PKdQR1fZQoaAZHQJDbrZlFtsNoB03oA2gIR0CpxloU8FINdX2UKGgGR0CDHdJ5mh/RaAdN6ANoCEdAqcbGLiuMdnV9lChoBkdAj1iVq33HrGgHTegDaAhHQKnGyRnOB191fZQoaAZHQJH2jgn+hoNoB03oA2gIR0Cpznwsf7rLdX2UKGgGR0CIpFZRKpT/aAdN6ANoCEdAqdQLP8hs7HV9lChoBkdAi1b4uTRplGgHTegDaAhHQKnUeZKnNxF1fZQoaAZHQI0hhVhkRSRoB03oA2gIR0Cp1Hx20Re1dX2UKGgGR0CTGzjkdV/+aAdN6ANoCEdAqdwWh0yP/HV9lChoBkdAjLKLWZqmCWgHTegDaAhHQKnhmhV2icp1fZQoaAZHQJGD8T8HfMxoB03oA2gIR0Cp4g6sQumKdX2UKGgGR0CPNuUWVNYbaAdN6ANoCEdAqeIRh8Yyf3V9lChoBkdAkDjTZ+QU6GgHTegDaAhHQKnpsepXIU91fZQoaAZHQJDh/xH5JshoB03oA2gIR0Cp7xxq46OpdX2UKGgGR0CQ5F0voNd7aAdN6ANoCEdAqe+Ly8SPEXV9lChoBkdAipYaasp5NWgHTegDaAhHQKnvjrpqynl1fZQoaAZHQJD88K0D2aloB03oA2gIR0Cp9zSLhrFgdX2UKGgGR0CIO3OdGy5aaAdN6ANoCEdAqfyxRZU1h3V9lChoBkdAiy0ZDZ13dWgHTegDaAhHQKn9I7GNrCZ1fZQoaAZHQI1Ao9HMEA5oB03oA2gIR0Cp/SaY/mkndX2UKGgGR0CKgCrhBJI2aAdN6ANoCEdAqgS7KA8SwnV9lChoBkdAkiHsxsVLz2gHTegDaAhHQKoKNk+5e7d1fZQoaAZHQI/hboEB8x9oB03oA2gIR0CqCqOmrKeTdX2UKGgGR0COecaS9ugpaAdN6ANoCEdAqgqmg+Qlr3V9lChoBkdAk2LybhFVk2gHTegDaAhHQKoSSTvAoG91fZQoaAZHQJF8+FWXC0poB03oA2gIR0CqF8XGff4zdX2UKGgGR0COSUdkJ8fFaAdN6ANoCEdAqhgxSUC7snV9lChoBkdAkBSQn+hoNGgHTegDaAhHQKoYNALRa5h1fZQoaAZHQJDgkL7XQMRoB03oA2gIR0CqH9mwRoRJdX2UKGgGR0CR88SxZ+x4aAdN6ANoCEdAqiU35ULlWHV9lChoBkdAkSaq8Hv+fmgHTegDaAhHQKolpf4REnd1fZQoaAZHQJIjhs41gploB03oA2gIR0CqJajOkcjrdX2UKGgGR0CT4F6P8yeqaAdN6ANoCEdAqi05cX3xnXV9lChoBkdAkyceyNXHR2gHTegDaAhHQKoykEeyRjl1fZQoaAZHQJFt68VYZEVoB03oA2gIR0CqMv+o1k1/dX2UKGgGR0CTgF9pAUtaaAdN6ANoCEdAqjMCjWTX8XV9lChoBkdAkSsoJqqOtGgHTegDaAhHQKo6itQsPJ91fZQoaAZHQJO+tgOSW7hoB03oA2gIR0CqP+bXYlIFdX2UKGgGR0CVWqwiJO32aAdN6ANoCEdAqkBW3H7xeHV9lChoBkdAkYb9EG7jDWgHTegDaAhHQKpAWZ7Xxvx1fZQoaAZHQJOMl/ZuhsZoB03oA2gIR0CqR+OMMqjKdX2UKGgGR0CQl3EGJN0vaAdN6ANoCEdAqk1ABNmDlHV9lChoBkdAkGaCp3os7WgHTegDaAhHQKpNrWZJCjV1fZQoaAZHQJOdvjQzDXRoB03oA2gIR0CqTbAvcrRTdX2UKGgGR0CR0n+4smOVaAdN6ANoCEdAqlU+i35N5HV9lChoBkdAks6dp/PPcGgHTegDaAhHQKpaow0wait1fZQoaAZHQJREBSaVlf9oB03oA2gIR0CqWxIg3cYZdX2UKGgGR0CTzimq5sj3aAdN6ANoCEdAqlsU8YAKfHV9lChoBkdAkQnbdepn6GgHTegDaAhHQKpipSWJJoV1fZQoaAZHQIxLIH3UQTVoB03oA2gIR0CqaA6p5u63dX2UKGgGR0CQKP5N47iiaAdN6ANoCEdAqmh78HfMwHV9lChoBkdAkIAA3cYZVGgHTegDaAhHQKpofsdkrgB1fZQoaAZHQJFa+L61stVoB03oA2gIR0CqcA3AVO9GdX2UKGgGR0CSYztrsSkCaAdN6ANoCEdAqnV5/Tb35HV9lChoBkdAkdfMEeQuEmgHTegDaAhHQKp15A6+36R1fZQoaAZHQJI3kvUSZjRoB03oA2gIR0CqdebdBSk1dX2UKGgGR0CT9sFkQPI5aAdN6ANoCEdAqn19IuoP1HV9lChoBkdAk/ZK3y7PIGgHTegDaAhHQKqC4H446wN1fZQoaAZHQJSABme18b9oB03oA2gIR0Cqg1BUrCm/dX2UKGgGR0CRWL0163RYaAdN6ANoCEdAqoNTK3d9D3VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b500adb1c65ac0c49898e8311a4560310b5e38389b25ffabb5470f832222695f
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1b9b265a713850ada78d07ac56b05301284802b9921c3383ddbab0fcb0fc26d
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa98ec01050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa98ec010e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa98ec01170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa98ec01200>", "_build": "<function ActorCriticPolicy._build at 0x7fa98ec01290>", "forward": "<function ActorCriticPolicy.forward at 0x7fa98ec01320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa98ec013b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa98ec01440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa98ec014d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa98ec01560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa98ec015f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa98ec55630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662232033.6530237, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA86jYPhSHz74mlLQ+1sEdQPRCyr50cvO/4F4QvzE0T744jEu/UE+wPwzYp74ewCq84AuGP67WzL5lU4A+Omy+Py2DNz8I+Si/7bqYv9KNsr81ujS+ZblVv7ZksT8e4ps/VKL/v9vToD5YQyE/SZ9SP9pFSz8sgSu/MvP+PaglWj/QAMq/U0rTP0DxwL7CoBK/kra0v1FrjL7dE1g/Ag3QPAwBUT+13v+/lDr+PpcKf7+3Rwo+glfyvxCTRr/F6Ae/BOJdPeo8Xr3E0Qk/d7m2v+cuAD/b06A+WEMhP76Tm7+Ra5I/y2qzv223qb/WLso+Vx4Mv/O1BDwEAOm+udPgPUc1Kr89E48/V3QuPi6VJ7/1K7w/ggX+P6xSdL/6IbW9n+vJv18qfz8UghPAxYUcPoGSN0DO6IA7jRN9v2UBRcDnLgA/29OgPlhDIT++k5u/p3KoP2myKL9Zwgo+Y5kdP41Nsb9+TqY/Z757v9Dx5b5iaCq/MwTdPzuwAT9Rfxc9q9ahP57hKz/xPp28uq/2Pl50078wzkA9316Uv6neqT6YNARATrcCQE8VhL/wHjLA5y4AP9vToD5YQyE/vpObv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAGQrlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLgWA9AAAAAP6k878AAAAAUXetPQAAAACFzeQ/AAAAAEoe7T0AAAAApsHjPwAAAAAvckK9AAAAABIf3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxEpu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzIL3PQAAAAAlLOa/AAAAAOeHsr0AAAAA0cbfPwAAAABv2KY9AAAAAOkV6D8AAAAAXKCcPQAAAADVmea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAELcbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBkCXL0AAAAAoW3xvwAAAADnv808AAAAAIcg9z8AAAAAo+oTvAAAAACnWPE/AAAAAKmj97wAAAAA2wAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnYzTMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAM7go8AAAAACzZ578AAAAAG1y2vQAAAACOWeM/AAAAAESXNj0AAAAAdZPlPwAAAACb7mO9AAAAAAA/778AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFNXHaN+9eMAWyUTegDjAF0lEdAqTkGZZ0Sy3V9lChoBkdAk0T9MXaakWgHTegDaAhHQKk+WiJwbVB1fZQoaAZHQJIrOoqCpWFoB03oA2gIR0CpPsXrleWwdX2UKGgGR0CST2DWsijdaAdN6ANoCEdAqT7Imois4nV9lChoBkdAkCXYw7DEWWgHTegDaAhHQKlGO7e2uxN1fZQoaAZHQI1BqZOSGJxoB03oA2gIR0CpS4hVU+9rdX2UKGgGR0CQmFlbNbC8aAdN6ANoCEdAqUv+2iL2pXV9lChoBkdAkFFFuaWonGgHTegDaAhHQKlMAYyfthN1fZQoaAZHQI3b+EPDpC9oB03oA2gIR0CpU/VGkN4JdX2UKGgGR0CIg40jTrmhaAdN6ANoCEdAqVmtEy+HrXV9lChoBkdAhwMnJkoWpWgHTegDaAhHQKlaHSThYNl1fZQoaAZHQIRfuenQ6ZJoB03oA2gIR0CpWiABLf1pdX2UKGgGR0CNsNt3wCr+aAdN6ANoCEdAqWHWmHgxanV9lChoBkdAhiSBInSfDmgHTegDaAhHQKlnbppN9IB1fZQoaAZHQIXvmw5eZ5RoB03oA2gIR0CpZ9yzHCGfdX2UKGgGR0CIjnTUiILxaAdN6ANoCEdAqWffggow23V9lChoBkdAhUlVT72tdWgHTegDaAhHQKlvoLrHEMt1fZQoaAZHQIl9YnDziCJoB03oA2gIR0CpdSPexfOVdX2UKGgGR0CM7BO58Sf2aAdN6ANoCEdAqXWRpg1FY3V9lChoBkdAiJgR/3Fkx2gHTegDaAhHQKl1lKzzErJ1fZQoaAZHQINmkdzXBgxoB03oA2gIR0CpfT7F85S4dX2UKGgGR0Bxv0eRxLkCaAdN6ANoCEdAqYKvaYeDF3V9lChoBkdAhuP6uGKyfWgHTegDaAhHQKmDI3AmAsl1fZQoaAZHQIRHHthNM49oB03oA2gIR0CpgyZNGmUGdX2UKGgGR0CJOFzwtrbhaAdN6ANoCEdAqYqwvL5h0HV9lChoBkdAh+1hj4Hoo2gHTegDaAhHQKmQLPi1iON1fZQoaAZHQI4TwsXizcBoB03oA2gIR0CpkJ5xR2r5dX2UKGgGR0CBo0b5uZTiaAdN6ANoCEdAqZChYHPeHnV9lChoBkdAi9uxYJVsDWgHTegDaAhHQKmYYWac7Qt1fZQoaAZHQJAcE2xY7q9oB03oA2gIR0CpneomgJ1JdX2UKGgGR0CGS+oBJZntaAdN6ANoCEdAqZ5XT7VJ+XV9lChoBkdAiNx4BNmDlGgHTegDaAhHQKmeWiL2pQ11fZQoaAZHQI4roxagVXVoB03oA2gIR0Cpphmxlg+hdX2UKGgGR0CN+a6mwaBJaAdN6ANoCEdAqauPUtqYZ3V9lChoBkdAjKCtlqagEmgHTegDaAhHQKmr+wC8vmJ1fZQoaAZHQJCB0XWOIZZoB03oA2gIR0Cpq/3iaRZEdX2UKGgGR0CM35nvlU6xaAdN6ANoCEdAqbORcPe54HV9lChoBkdAidDUfHPu5WgHTegDaAhHQKm46k0Jng51fZQoaAZHQIuaBG+bmU5oB03oA2gIR0CpuVgmqo60dX2UKGgGR0CPEGXKKYReaAdN6ANoCEdAqblb8k2P1nV9lChoBkdAkt0anFYMfGgHTegDaAhHQKnA66PKdQR1fZQoaAZHQJDbrZlFtsNoB03oA2gIR0CpxloU8FINdX2UKGgGR0CDHdJ5mh/RaAdN6ANoCEdAqcbGLiuMdnV9lChoBkdAj1iVq33HrGgHTegDaAhHQKnGyRnOB191fZQoaAZHQJH2jgn+hoNoB03oA2gIR0Cpznwsf7rLdX2UKGgGR0CIpFZRKpT/aAdN6ANoCEdAqdQLP8hs7HV9lChoBkdAi1b4uTRplGgHTegDaAhHQKnUeZKnNxF1fZQoaAZHQI0hhVhkRSRoB03oA2gIR0Cp1Hx20Re1dX2UKGgGR0CTGzjkdV/+aAdN6ANoCEdAqdwWh0yP/HV9lChoBkdAjLKLWZqmCWgHTegDaAhHQKnhmhV2icp1fZQoaAZHQJGD8T8HfMxoB03oA2gIR0Cp4g6sQumKdX2UKGgGR0CPNuUWVNYbaAdN6ANoCEdAqeIRh8Yyf3V9lChoBkdAkDjTZ+QU6GgHTegDaAhHQKnpsepXIU91fZQoaAZHQJDh/xH5JshoB03oA2gIR0Cp7xxq46OpdX2UKGgGR0CQ5F0voNd7aAdN6ANoCEdAqe+Ly8SPEXV9lChoBkdAipYaasp5NWgHTegDaAhHQKnvjrpqynl1fZQoaAZHQJD88K0D2aloB03oA2gIR0Cp9zSLhrFgdX2UKGgGR0CIO3OdGy5aaAdN6ANoCEdAqfyxRZU1h3V9lChoBkdAiy0ZDZ13dWgHTegDaAhHQKn9I7GNrCZ1fZQoaAZHQI1Ao9HMEA5oB03oA2gIR0Cp/SaY/mkndX2UKGgGR0CKgCrhBJI2aAdN6ANoCEdAqgS7KA8SwnV9lChoBkdAkiHsxsVLz2gHTegDaAhHQKoKNk+5e7d1fZQoaAZHQI/hboEB8x9oB03oA2gIR0CqCqOmrKeTdX2UKGgGR0COecaS9ugpaAdN6ANoCEdAqgqmg+Qlr3V9lChoBkdAk2LybhFVk2gHTegDaAhHQKoSSTvAoG91fZQoaAZHQJF8+FWXC0poB03oA2gIR0CqF8XGff4zdX2UKGgGR0COSUdkJ8fFaAdN6ANoCEdAqhgxSUC7snV9lChoBkdAkBSQn+hoNGgHTegDaAhHQKoYNALRa5h1fZQoaAZHQJDgkL7XQMRoB03oA2gIR0CqH9mwRoRJdX2UKGgGR0CR88SxZ+x4aAdN6ANoCEdAqiU35ULlWHV9lChoBkdAkSaq8Hv+fmgHTegDaAhHQKolpf4REnd1fZQoaAZHQJIjhs41gploB03oA2gIR0CqJajOkcjrdX2UKGgGR0CT4F6P8yeqaAdN6ANoCEdAqi05cX3xnXV9lChoBkdAkyceyNXHR2gHTegDaAhHQKoykEeyRjl1fZQoaAZHQJFt68VYZEVoB03oA2gIR0CqMv+o1k1/dX2UKGgGR0CTgF9pAUtaaAdN6ANoCEdAqjMCjWTX8XV9lChoBkdAkSsoJqqOtGgHTegDaAhHQKo6itQsPJ91fZQoaAZHQJO+tgOSW7hoB03oA2gIR0CqP+bXYlIFdX2UKGgGR0CVWqwiJO32aAdN6ANoCEdAqkBW3H7xeHV9lChoBkdAkYb9EG7jDWgHTegDaAhHQKpAWZ7Xxvx1fZQoaAZHQJOMl/ZuhsZoB03oA2gIR0CqR+OMMqjKdX2UKGgGR0CQl3EGJN0vaAdN6ANoCEdAqk1ABNmDlHV9lChoBkdAkGaCp3os7WgHTegDaAhHQKpNrWZJCjV1fZQoaAZHQJOdvjQzDXRoB03oA2gIR0CqTbAvcrRTdX2UKGgGR0CR0n+4smOVaAdN6ANoCEdAqlU+i35N5HV9lChoBkdAks6dp/PPcGgHTegDaAhHQKpaow0wait1fZQoaAZHQJREBSaVlf9oB03oA2gIR0CqWxIg3cYZdX2UKGgGR0CTzimq5sj3aAdN6ANoCEdAqlsU8YAKfHV9lChoBkdAkQnbdepn6GgHTegDaAhHQKpipSWJJoV1fZQoaAZHQIxLIH3UQTVoB03oA2gIR0CqaA6p5u63dX2UKGgGR0CQKP5N47iiaAdN6ANoCEdAqmh78HfMwHV9lChoBkdAkIAA3cYZVGgHTegDaAhHQKpofsdkrgB1fZQoaAZHQJFa+L61stVoB03oA2gIR0CqcA3AVO9GdX2UKGgGR0CSYztrsSkCaAdN6ANoCEdAqnV5/Tb35HV9lChoBkdAkdfMEeQuEmgHTegDaAhHQKp15A6+36R1fZQoaAZHQJI3kvUSZjRoB03oA2gIR0CqdebdBSk1dX2UKGgGR0CT9sFkQPI5aAdN6ANoCEdAqn19IuoP1HV9lChoBkdAk/ZK3y7PIGgHTegDaAhHQKqC4H446wN1fZQoaAZHQJSABme18b9oB03oA2gIR0Cqg1BUrCm/dX2UKGgGR0CRWL0163RYaAdN6ANoCEdAqoNTK3d9D3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11443c97050541fe50b11a462c377a9ea04ac6197a5e0f915669408c10c57d29
3
+ size 1083451
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1081.5263100977288, "std_reward": 144.6977454171455, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-03T20:05:13.370544"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47bb8e525f5f8735fb1abeeecb90d8d04830ab8696d7402666c225dcbfc1e184
3
+ size 2763