ShubhamSwarnakar commited on
Commit
9f9198d
ยท
verified ยท
1 Parent(s): 5835e55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -135
README.md CHANGED
@@ -1,199 +1,157 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
133
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-classification
5
+ - sentiment-analysis
6
+ - imdb
7
+ - bert
8
+ - colab
9
+ - huggingface
10
+ - fine-tuned
11
+ license: apache-2.0
12
  ---
13
 
14
+ # ๐Ÿค– BERT IMDb Sentiment Classifier
 
 
15
 
16
+ A fine-tuned `bert-base-uncased` model for **binary sentiment classification** on the [IMDb movie reviews dataset](https://huggingface.co/datasets/imdb).
17
+ Trained in Google Colab using Hugging Face Transformers with ~93% test accuracy.
18
 
19
+ ---
20
 
21
+ ## ๐Ÿ“Œ Model Details
22
 
23
  ### Model Description
24
 
25
+ - **Developed by:** Shubham Swarnakar
26
+ - **Shared by:** [ShubhamSwarnakar](https://huggingface.co/ShubhamSwarnakar)
27
+ - **Model type:** `BERTForSequenceClassification`
28
+ - **Language(s):** English ๐Ÿ‡บ๐Ÿ‡ธ
29
+ - **License:** Apache-2.0
30
+ - **Fine-tuned from:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
31
 
32
+ ### Model Sources
 
 
 
 
 
 
33
 
34
+ - **Repository:** https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model
35
+ - **Demo:** Available via Hugging Face Inference Widget
36
 
37
+ ---
 
 
 
 
 
 
38
 
39
+ ## โœ… Uses
40
 
41
  ### Direct Use
42
 
43
+ Use this model for **sentiment analysis** on English movie reviews or similar texts.
44
+ Returns either a `positive` or `negative` classification.
45
 
46
+ ### Downstream Use
47
 
48
+ Can be fine-tuned further for domain-specific sentiment classification tasks.
 
 
 
 
49
 
50
  ### Out-of-Scope Use
51
 
52
+ Not designed for:
53
+ - Multilingual sentiment analysis
54
+ - Nuanced emotion detection (e.g., joy, anger, sarcasm)
55
+ - Non-movie domains without re-training
56
 
57
+ ---
58
 
59
+ ## โš ๏ธ Bias, Risks, and Limitations
60
 
61
+ This model inherits potential biases from:
62
+ - Pretrained BERT weights
63
+ - IMDb dataset (may reflect demographic or cultural skew)
64
 
65
  ### Recommendations
66
 
67
+ Avoid deploying this model in high-risk applications without auditing or further fine-tuning. Misclassification risk exists, especially with ambiguous or sarcastic text.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ ## ๐Ÿš€ How to Get Started
72
 
73
+ ```python
74
+ from transformers import pipeline
75
 
76
+ classifier = pipeline("sentiment-analysis", model="ShubhamSwarnakar/bert-imdb-colab-model")
77
+ classifier("This movie was surprisingly entertaining!")
78
 
79
 
 
80
 
 
81
 
82
+ ๐Ÿง  Training Details
83
+ Training Data
84
+ Dataset: IMDb Dataset
85
 
86
+ Format: Binary sentiment (positive = 1, negative = 0)
87
 
88
+ Training Procedure
89
+ Preprocessing: Tokenized with BertTokenizerFast
90
 
91
+ Epochs: 3
92
 
93
+ Optimizer: AdamW
 
 
 
 
94
 
95
+ Scheduler: Linear LR
96
 
97
+ Batch size: 8
98
 
99
+ Trained using Colab with limited GPU resources
100
 
101
+ ๐Ÿ“Š Evaluation
102
+ Metrics
103
 
104
+ Final test accuracy: 93.47%
105
 
106
+ Results Summary
107
+ Epoch Validation Accuracy
108
+ 1 91.80%
109
+ 2 92.04%
110
+ 3 92.92%
111
 
112
+ Final test accuracy on held-out IMDb test split: 93.47%
113
 
114
+ ๐ŸŒฑ Environmental Impact
115
+ Estimated based on lightweight training:
116
 
117
+ Hardware Type: Google Colab GPU (T4)
118
 
119
+ Training Duration: ~2 hours
120
 
121
+ Cloud Provider: Google
122
 
123
+ Region: Unknown
124
 
125
+ Emissions Estimate: ~0.15 kg COโ‚‚eq
126
 
127
+ Estimate via ML CO2 Impact Calculator
128
 
129
+ ๐Ÿ—๏ธ Technical Specifications
130
+ Architecture
131
+ BERT-base (12-layer, 768-hidden, 12-heads, 110M parameters)
132
 
133
+ Compute Infrastructure
134
+ Hardware: Google Colab with GPU
135
 
136
+ Software:
137
 
138
+ Python 3.11
139
 
140
+ Transformers 4.x
141
 
142
+ Datasets
143
 
144
+ PyTorch 2.x
145
 
146
+ ๐Ÿ“š Citation
147
 
148
+ @misc{shubhamswarnakar_bert_imdb_2025,
149
+ author = {Shubham Swarnakar},
150
+ title = {BERT IMDb Sentiment Classifier},
151
+ year = 2025,
152
+ publisher = {Hugging Face},
153
+ howpublished = {\url{https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model}},
154
+ }
155
 
156
+ ๐Ÿ™‹ More Info
157
+ For questions or collaboration, contact @ShubhamSwarnakar.