Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,157 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
|
|
132 |
|
|
|
|
|
133 |
|
134 |
|
135 |
-
## Model Examination [optional]
|
136 |
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
|
139 |
-
|
|
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
|
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
|
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
|
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- sentiment-analysis
|
6 |
+
- imdb
|
7 |
+
- bert
|
8 |
+
- colab
|
9 |
+
- huggingface
|
10 |
+
- fine-tuned
|
11 |
+
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
+
# ๐ค BERT IMDb Sentiment Classifier
|
|
|
|
|
15 |
|
16 |
+
A fine-tuned `bert-base-uncased` model for **binary sentiment classification** on the [IMDb movie reviews dataset](https://huggingface.co/datasets/imdb).
|
17 |
+
Trained in Google Colab using Hugging Face Transformers with ~93% test accuracy.
|
18 |
|
19 |
+
---
|
20 |
|
21 |
+
## ๐ Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
+
- **Developed by:** Shubham Swarnakar
|
26 |
+
- **Shared by:** [ShubhamSwarnakar](https://huggingface.co/ShubhamSwarnakar)
|
27 |
+
- **Model type:** `BERTForSequenceClassification`
|
28 |
+
- **Language(s):** English ๐บ๐ธ
|
29 |
+
- **License:** Apache-2.0
|
30 |
+
- **Fine-tuned from:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
|
31 |
|
32 |
+
### Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
- **Repository:** https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model
|
35 |
+
- **Demo:** Available via Hugging Face Inference Widget
|
36 |
|
37 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
## โ
Uses
|
40 |
|
41 |
### Direct Use
|
42 |
|
43 |
+
Use this model for **sentiment analysis** on English movie reviews or similar texts.
|
44 |
+
Returns either a `positive` or `negative` classification.
|
45 |
|
46 |
+
### Downstream Use
|
47 |
|
48 |
+
Can be fine-tuned further for domain-specific sentiment classification tasks.
|
|
|
|
|
|
|
|
|
49 |
|
50 |
### Out-of-Scope Use
|
51 |
|
52 |
+
Not designed for:
|
53 |
+
- Multilingual sentiment analysis
|
54 |
+
- Nuanced emotion detection (e.g., joy, anger, sarcasm)
|
55 |
+
- Non-movie domains without re-training
|
56 |
|
57 |
+
---
|
58 |
|
59 |
+
## โ ๏ธ Bias, Risks, and Limitations
|
60 |
|
61 |
+
This model inherits potential biases from:
|
62 |
+
- Pretrained BERT weights
|
63 |
+
- IMDb dataset (may reflect demographic or cultural skew)
|
64 |
|
65 |
### Recommendations
|
66 |
|
67 |
+
Avoid deploying this model in high-risk applications without auditing or further fine-tuning. Misclassification risk exists, especially with ambiguous or sarcastic text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
## ๐ How to Get Started
|
72 |
|
73 |
+
```python
|
74 |
+
from transformers import pipeline
|
75 |
|
76 |
+
classifier = pipeline("sentiment-analysis", model="ShubhamSwarnakar/bert-imdb-colab-model")
|
77 |
+
classifier("This movie was surprisingly entertaining!")
|
78 |
|
79 |
|
|
|
80 |
|
|
|
81 |
|
82 |
+
๐ง Training Details
|
83 |
+
Training Data
|
84 |
+
Dataset: IMDb Dataset
|
85 |
|
86 |
+
Format: Binary sentiment (positive = 1, negative = 0)
|
87 |
|
88 |
+
Training Procedure
|
89 |
+
Preprocessing: Tokenized with BertTokenizerFast
|
90 |
|
91 |
+
Epochs: 3
|
92 |
|
93 |
+
Optimizer: AdamW
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
Scheduler: Linear LR
|
96 |
|
97 |
+
Batch size: 8
|
98 |
|
99 |
+
Trained using Colab with limited GPU resources
|
100 |
|
101 |
+
๐ Evaluation
|
102 |
+
Metrics
|
103 |
|
104 |
+
Final test accuracy: 93.47%
|
105 |
|
106 |
+
Results Summary
|
107 |
+
Epoch Validation Accuracy
|
108 |
+
1 91.80%
|
109 |
+
2 92.04%
|
110 |
+
3 92.92%
|
111 |
|
112 |
+
Final test accuracy on held-out IMDb test split: 93.47%
|
113 |
|
114 |
+
๐ฑ Environmental Impact
|
115 |
+
Estimated based on lightweight training:
|
116 |
|
117 |
+
Hardware Type: Google Colab GPU (T4)
|
118 |
|
119 |
+
Training Duration: ~2 hours
|
120 |
|
121 |
+
Cloud Provider: Google
|
122 |
|
123 |
+
Region: Unknown
|
124 |
|
125 |
+
Emissions Estimate: ~0.15 kg COโeq
|
126 |
|
127 |
+
Estimate via ML CO2 Impact Calculator
|
128 |
|
129 |
+
๐๏ธ Technical Specifications
|
130 |
+
Architecture
|
131 |
+
BERT-base (12-layer, 768-hidden, 12-heads, 110M parameters)
|
132 |
|
133 |
+
Compute Infrastructure
|
134 |
+
Hardware: Google Colab with GPU
|
135 |
|
136 |
+
Software:
|
137 |
|
138 |
+
Python 3.11
|
139 |
|
140 |
+
Transformers 4.x
|
141 |
|
142 |
+
Datasets
|
143 |
|
144 |
+
PyTorch 2.x
|
145 |
|
146 |
+
๐ Citation
|
147 |
|
148 |
+
@misc{shubhamswarnakar_bert_imdb_2025,
|
149 |
+
author = {Shubham Swarnakar},
|
150 |
+
title = {BERT IMDb Sentiment Classifier},
|
151 |
+
year = 2025,
|
152 |
+
publisher = {Hugging Face},
|
153 |
+
howpublished = {\url{https://huggingface.co/ShubhamSwarnakar/bert-imdb-colab-model}},
|
154 |
+
}
|
155 |
|
156 |
+
๐ More Info
|
157 |
+
For questions or collaboration, contact @ShubhamSwarnakar.
|