Shuu12121 commited on
Commit
0978086
·
verified ·
1 Parent(s): 95e3882

Upload ModernBERT model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1761493
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: Shuu12121/CodeModernBERT-Crow
10
+ widget:
11
+ - source_sentence: 'getAttachment
12
+
13
+ Return an attachment from a SharePoint list item
14
+
15
+
16
+ @param $list_name Name of list
17
+
18
+ @param $list_item_id ID of record item is attached to
19
+
20
+ @return Array of attachment urls'
21
+ sentences:
22
+ - "private function getOrderDirection(): string\n {\n $result = !empty($this->searchData['sort_by_order'])\
23
+ \ ?\n $this->searchData['sort_by_order'] :\n Options::DEFAULT_SORT_BY_ORDER;\n\
24
+ \n return $result;\n }"
25
+ - "function(property, value) {\n var values = [];\n for (var i in\
26
+ \ this._nodes) {\n if (this._nodes.hasOwnProperty(i)) {\n \
27
+ \ var n = this._nodes[i];\n if ((property in n && n[property]\
28
+ \ == value) || (n.data && value == n.data[property])) {\n values.push(n);\n\
29
+ \ }\n }\n }\n\n return (values.length)\
30
+ \ ? values : null;\n }"
31
+ - "public function getAttachments ($list_name, $list_item_id) {\n\t\t// Wrap in\
32
+ \ CAML\n\t\t$CAML = '\n\t\t<GetAttachmentCollection xmlns=\"http://schemas.microsoft.com/sharepoint/soap/\"\
33
+ >\n\t\t\t<listName>' . $list_name . '</listName>\n\t\t\t<listItemID>' . $list_item_id\
34
+ \ . '</listItemID>\n\t\t</GetAttachmentCollection>';\n\n\t\t$xmlvar = new \\SoapVar($CAML,\
35
+ \ XSD_ANYXML);\n\n\t\t// Attempt to run operation\n\t\ttry {\n\t\t\t$rawXml =\
36
+ \ $this->soapClient->GetAttachmentCollection($xmlvar)->GetAttachmentCollectionResult->any;\n\
37
+ \t\t} catch (\\SoapFault $fault) {\n\t\t\t$this->onError($fault);\n\t\t}\n\n\t\
38
+ \t// Load XML in to DOM document and grab all list items.\n\t\t$nodes = $this->getArrayFromElementsByTagName($rawXml,\
39
+ \ 'Attachment');\n\n\t\t$attachments = array();\n\n\t\t// Format data in to array\
40
+ \ or object\n\t\tforeach ($nodes as $counter => $node) {\n\t\t\t$attachments[]\
41
+ \ = $node->textContent;\n\t\t}\n\n\t\t// Return Array of attachment URLs\n\t\t\
42
+ return $attachments;\n\t}"
43
+ - source_sentence: 'Load the services into the module if they have
44
+
45
+ not loaded already
46
+
47
+ @param \OtherCode\FController\Components\Services $services
48
+
49
+ @param \OtherCode\FController\Components\Registry $storage
50
+
51
+ @param \OtherCode\FController\Components\Messages $messages'
52
+ sentences:
53
+ - "public function connect(\\OtherCode\\FController\\Components\\Services $services,\
54
+ \ \\OtherCode\\FController\\Components\\Registry $storage, \\OtherCode\\FController\\\
55
+ Components\\Messages $messages)\n {\n if (!isset($this->services)) {\n\
56
+ \ $this->services = $services;\n }\n\n if (!isset($this->storage))\
57
+ \ {\n $this->storage = $storage;\n }\n\n if (!isset($this->messages))\
58
+ \ {\n $this->messages = $messages;\n }\n }"
59
+ - "function(element) {\n var that = this;\n this.element = element;\n this.signalTap\
60
+ \ = new Listeners();\n this.signalLong = new Listeners();\n this.signalTouchstart\
61
+ \ = new Listeners();\n this.signalTouchend = new Listeners();\n this.signalMove\
62
+ \ = windowMove;\n this._touch = 0; // 0 = Nothing, 1 = Mouse, 2 = Touch.\n\
63
+ \ this._onMouseDown = function(evt) {\n if (that._touch) return;\n \
64
+ \ currentTouchListener = that;\n that._touch = 1;\n evt.preventDefault();\n\
65
+ \ evt.stopPropagation();\n var rect = that.element.getBoundingClientRect();\n\
66
+ \ var arg = {\n x: evt.pageX - rect.left,\n y: evt.pageY\
67
+ \ - rect.top,\n rect: rect\n };\n console.info(\"[tfw.touch-event]\
68
+ \ arg=...\", arg);\n that.signalTouchstart.fire(arg);\n };\n this._onTouchstart\
69
+ \ = function(evt) {\n if (that._touch) return;\n currentTouchListener\
70
+ \ = that;\n that._touch = 2;\n evt.preventDefault();\n evt.stopPropagation();\n\
71
+ \ var rect = that.element.getBoundingClientRect();\n var arg = {\n\
72
+ \ x: evt.pageX - rect.left,\n y: evt.pageY - rect.top,\n\
73
+ \ rect: rect\n };\n console.info(\"[tfw.touch-event]\
74
+ \ arg=...\", arg);\n that.signalTouchstart.fire(arg);\n };\n element.addEventListener(\"\
75
+ mousedown\", this._onMouseDown, false);\n}"
76
+ - "func (cfg *TransportConfig) WithBasePath(basePath string) *TransportConfig {\n\
77
+ \tcfg.BasePath = basePath\n\treturn cfg\n}"
78
+ - source_sentence: '// DirectoryValidator ensures the input is a valid and **existing**
79
+ directory
80
+
81
+ // Returns modified extended path'
82
+ sentences:
83
+ - "func DirectoryValidator(input string) (interface{}, error) {\n\tif input == \"\
84
+ \" {\n\t\treturn \"\", nil\n\t}\n\n\tpath, err := PathValidator(input)\n\tif err\
85
+ \ != nil {\n\t\treturn nil, err\n\t}\n\tpathStr := path.(string)\n\n\tinfo, err\
86
+ \ := os.Stat(pathStr)\n\tif err != nil {\n\t\treturn nil, err\n\t}\n\n\tif !info.IsDir()\
87
+ \ {\n\t\treturn nil, fmt.Errorf(\"%s is not a directory\", pathStr)\n\t}\n\n\t\
88
+ return pathStr, nil\n}"
89
+ - "public void addGivenVendor(String source, String name, String value, boolean\
90
+ \ regex, Confidence confidence) {\n givenVendor.add(new EvidenceMatcher(source,\
91
+ \ name, value, regex, confidence));\n }"
92
+ - "func (a *EnableArgs) SetMaxScriptsCacheSize(maxScriptsCacheSize float64) *EnableArgs\
93
+ \ {\n\ta.MaxScriptsCacheSize = &maxScriptsCacheSize\n\treturn a\n}"
94
+ - source_sentence: https://url.spec.whatwg.org/#url-miscellaneous
95
+ sentences:
96
+ - "public boolean isDescendent(TarEntry desc) {\r\n return desc.header.name.toString().startsWith(this.header.name.toString());\r\
97
+ \n }"
98
+ - "public String displayErrors(String pathPrefix) {\n\n if (pathPrefix ==\
99
+ \ null) {\n pathPrefix = \"\";\n }\n StringBuffer html\
100
+ \ = new StringBuffer(512);\n html.append(\"<table border='0' cellpadding='5'\
101
+ \ cellspacing='0' style='width: 100%; height: 100%;'>\");\n html.append(\"\
102
+ \\t<tr>\");\n html.append(\"\\t\\t<td style='vertical-align: middle; height:\
103
+ \ 100%;'>\");\n html.append(getHtmlPart(\"C_BLOCK_START\", \"Error\"));\n\
104
+ \ html.append(\"\\t\\t\\t<table border='0' cellpadding='0' cellspacing='0'\
105
+ \ style='width: 100%;'>\");\n html.append(\"\\t\\t\\t\\t<tr>\");\n \
106
+ \ html.append(\"\\t\\t\\t\\t\\t<td><img src='\").append(pathPrefix).append(\"\
107
+ resources/error.png' border='0'></td>\");\n html.append(\"\\t\\t\\t\\t\\\
108
+ t<td>&nbsp;&nbsp;</td>\");\n html.append(\"\\t\\t\\t\\t\\t<td style='width:\
109
+ \ 100%;'>\");\n\n Iterator<String> iter = getErrors().iterator();\n \
110
+ \ while (iter.hasNext()) {\n String msg = iter.next();\n \
111
+ \ html.append(\"\\t\\t\\t\\t\\t\\t\");\n html.append(msg);\n \
112
+ \ html.append(\"<br/>\");\n }\n\n html.append(\"\\t\\\
113
+ t\\t\\t\\t</td>\");\n html.append(\"\\t\\t\\t\\t</tr>\");\n html.append(\"\
114
+ \\t\\t\\t</table>\");\n html.append(getHtmlPart(\"C_BLOCK_END\"));\n \
115
+ \ html.append(\"\\t\\t</td>\");\n html.append(\"\\t</tr>\");\n \
116
+ \ html.append(\"</table>\");\n return html.toString();\n }"
117
+ - "function getDefaultPortFromScheme( scheme ) {\n var port = null;\n if ( scheme\
118
+ \ === 'ftp') {\n port = 21;\n }\n else if ( scheme === 'gopher' ) {\n \
119
+ \ port = 70;\n }\n else if ( scheme === 'http' || scheme === 'ws' ) {\n port\
120
+ \ = 80;\n }\n else if ( scheme === 'https' || scheme === 'wss' ) {\n port\
121
+ \ = 443;\n }\n return port;\n}"
122
+ - source_sentence: syntactic sugar
123
+ sentences:
124
+ - "@Override\n public void sawOpcode(int seen) {\n int groupId = -1;\n\
125
+ \n try {\n stack.precomputation(this);\n\n if (seen\
126
+ \ == Const.INVOKEINTERFACE) {\n String className = getClassConstantOperand();\n\
127
+ \ String methodName = getNameConstantOperand();\n \
128
+ \ String signature = getSigConstantOperand();\n QMethod methodInfo\
129
+ \ = new QMethod(methodName, signature);\n\n if (isCollection(className))\
130
+ \ {\n if (collectionMethods.contains(methodInfo) || ITERATOR.equals(methodInfo))\
131
+ \ {\n if (stack.getStackDepth() > 0) {\n \
132
+ \ OpcodeStack.Item itm = stack.getStackItem(0);\n \
133
+ \ groupId = findCollectionGroup(itm, true);\n \
134
+ \ }\n } else if (REMOVE.equals(methodInfo)) {\n \
135
+ \ if (stack.getStackDepth() > 1) {\n \
136
+ \ OpcodeStack.Item itm = stack.getStackItem(1);\n \
137
+ \ int id = findCollectionGroup(itm, true);\n if ((id\
138
+ \ >= 0) && collectionGroups.get(id).isStandardCollection()) {\n \
139
+ \ Integer it = groupToIterator.get(Integer.valueOf(id));\n \
140
+ \ Loop loop = loops.get(it);\n \
141
+ \ if (loop != null) {\n int pc\
142
+ \ = getPC();\n if (loop.hasPC(pc)) {\n \
143
+ \ boolean needPop = !Values.SIG_VOID.equals(SignatureUtils.getReturnSignature(signature));\n\
144
+ \n if (!breakFollows(loop, needPop) &&\
145
+ \ !returnFollows(needPop)) {\n bugReporter.reportBug(new\
146
+ \ BugInstance(this, BugType.DWI_DELETING_WHILE_ITERATING.name(), NORMAL_PRIORITY)\n\
147
+ \ .addClass(this).addMethod(this).addSourceLine(this));\n\
148
+ \ }\n \
149
+ \ }\n }\n }\n \
150
+ \ }\n } else {\n \
151
+ \ Integer numArgs = modifyingMethods.get(methodInfo);\n \
152
+ \ if ((numArgs != null) && (stack.getStackDepth() > numArgs.intValue())) {\n\
153
+ \ OpcodeStack.Item itm = stack.getStackItem(numArgs.intValue());\n\
154
+ \ int id = findCollectionGroup(itm, true);\n \
155
+ \ if (id >= 0) {\n Integer\
156
+ \ it = groupToIterator.get(Integer.valueOf(id));\n \
157
+ \ if (it != null) {\n Loop loop = loops.get(it);\n\
158
+ \ if (loop != null) {\n \
159
+ \ int pc = getPC();\n \
160
+ \ if (loop.hasPC(pc)) {\n boolean\
161
+ \ needPop = !Values.SIG_VOID.equals(SignatureUtils.getReturnSignature(signature));\n\
162
+ \ boolean breakFollows = breakFollows(loop,\
163
+ \ needPop);\n boolean returnFollows\
164
+ \ = !breakFollows && returnFollows(needPop);\n\n \
165
+ \ if (!breakFollows && !returnFollows) {\n \
166
+ \ bugReporter.reportBug(new BugInstance(this, BugType.DWI_MODIFYING_WHILE_ITERATING.name(),\
167
+ \ NORMAL_PRIORITY)\n .addClass(this).addMethod(this).addSourceLine(this));\n\
168
+ \ }\n \
169
+ \ }\n }\n \
170
+ \ }\n }\n }\n \
171
+ \ }\n } else if (\"java/util/Iterator\".equals(className)\
172
+ \ && HASNEXT.equals(methodInfo) && (stack.getStackDepth() > 0)) {\n \
173
+ \ OpcodeStack.Item itm = stack.getStackItem(0);\n \
174
+ \ Integer id = (Integer) itm.getUserValue();\n if (id != null)\
175
+ \ {\n groupId = id.intValue();\n }\n\
176
+ \ }\n } else if ((seen == Const.PUTFIELD) || (seen ==\
177
+ \ Const.PUTSTATIC)) {\n if (stack.getStackDepth() > 1) {\n \
178
+ \ OpcodeStack.Item itm = stack.getStackItem(0);\n\n \
179
+ \ Integer id = (Integer) itm.getUserValue();\n if (id\
180
+ \ == null) {\n FieldAnnotation fa = FieldAnnotation\n \
181
+ \ .fromFieldDescriptor(new FieldDescriptor(getClassConstantOperand(),\
182
+ \ getNameConstantOperand(), getSigConstantOperand(), false));\n \
183
+ \ itm = new OpcodeStack.Item(itm.getSignature(), fa, stack.getStackItem(1).getRegisterNumber());\n\
184
+ \ removeFromCollectionGroup(itm);\n \
185
+ \ groupId = findCollectionGroup(itm, true);\n }\n \
186
+ \ }\n } else if (OpcodeUtils.isAStore(seen)) {\n \
187
+ \ if (stack.getStackDepth() > 0) {\n OpcodeStack.Item\
188
+ \ itm = stack.getStackItem(0);\n Integer id = (Integer) itm.getUserValue();\n\
189
+ \ if (id != null) {\n int reg = RegisterUtils.getAStoreReg(this,\
190
+ \ seen);\n\n try {\n JavaClass\
191
+ \ cls = itm.getJavaClass();\n if ((cls != null) &&\
192
+ \ cls.implementationOf(iteratorClass)) {\n Integer\
193
+ \ regIt = Integer.valueOf(reg);\n Iterator<Integer>\
194
+ \ curIt = groupToIterator.values().iterator();\n \
195
+ \ while (curIt.hasNext()) {\n if (curIt.next().equals(regIt))\
196
+ \ {\n curIt.remove();\n \
197
+ \ }\n }\n \
198
+ \ groupToIterator.put(id, regIt);\n }\n\
199
+ \n GroupPair pair = collectionGroups.get(id.intValue());\n\
200
+ \ if (pair != null) {\n \
201
+ \ pair.addMember(Integer.valueOf(reg));\n }\n \
202
+ \ } catch (ClassNotFoundException cnfe) {\n \
203
+ \ bugReporter.reportMissingClass(cnfe);\n \
204
+ \ }\n } else {\n String cls = itm.getSignature();\n\
205
+ \ if ((cls != null) && cls.startsWith(Values.SIG_QUALIFIED_CLASS_PREFIX))\
206
+ \ {\n cls = SignatureUtils.trimSignature(cls);\n \
207
+ \ if (isCollection(cls) || \"java/util/Iterator\".equals(cls))\
208
+ \ {\n int reg = RegisterUtils.getAStoreReg(this,\
209
+ \ seen);\n removeFromCollectionGroup(new OpcodeStack.Item(itm,\
210
+ \ reg));\n Iterator<Integer> it = groupToIterator.values().iterator();\n\
211
+ \ while (it.hasNext()) {\n \
212
+ \ if (it.next().intValue() == reg) {\n \
213
+ \ it.remove();\n break;\n\
214
+ \ }\n }\n \
215
+ \ }\n }\n }\n\
216
+ \ }\n } else if (OpcodeUtils.isALoad(seen)) {\n \
217
+ \ int reg = RegisterUtils.getALoadReg(this, seen);\n \
218
+ \ OpcodeStack.Item itm = new OpcodeStack.Item(new OpcodeStack.Item(), reg);\n\
219
+ \ groupId = findCollectionGroup(itm, false);\n } else\
220
+ \ if ((seen == Const.IFEQ) && (stack.getStackDepth() > 0)) {\n \
221
+ \ OpcodeStack.Item itm = stack.getStackItem(0);\n Integer id =\
222
+ \ (Integer) itm.getUserValue();\n if (id != null) {\n \
223
+ \ int target = getBranchTarget();\n int gotoAddr\
224
+ \ = target - 3;\n int ins = getCode().getCode()[gotoAddr];\n\
225
+ \ if (ins < 0) {\n ins = 256 + ins;\n\
226
+ \ }\n if ((ins == Const.GOTO) || (ins ==\
227
+ \ Const.GOTO_W)) {\n Integer reg = groupToIterator.get(id);\n\
228
+ \ if (reg != null) {\n loops.put(reg,\
229
+ \ new Loop(getPC(), gotoAddr));\n }\n \
230
+ \ }\n }\n }\n } finally {\n TernaryPatcher.pre(stack,\
231
+ \ seen);\n stack.sawOpcode(this, seen);\n TernaryPatcher.post(stack,\
232
+ \ seen);\n if ((groupId >= 0) && (stack.getStackDepth() > 0)) {\n \
233
+ \ OpcodeStack.Item itm = stack.getStackItem(0);\n \
234
+ \ itm.setUserValue(Integer.valueOf(groupId));\n }\n\n processEndOfScopes(Integer.valueOf(getPC()));\n\
235
+ \ }\n }"
236
+ - "function Concept(concept) {\n if (!(concept.prefLabel && concept.id && concept.type\
237
+ \ === 'Concept')) {\n throw new Error('Invalid concept: \"' + concept.id +\
238
+ \ '\"');\n }\n this.id = concept.id;\n this.prefLabel = concept.prefLabel;\n\
239
+ \ this.altLabel = concept.altLabel;\n this.hiddenLabel = concept.hiddenLabel;\n\
240
+ \ this.definition = concept.definition;\n this._topConceptOf = concept.topConceptOf;\n\
241
+ \ this._partOfScheme = false;\n this._originalConcept = concept;\n this._broaderConcepts\
242
+ \ = [];\n this._narrowerConcepts = [];\n this._relatedConcepts = [];\n}"
243
+ - "public MessageDestinationComponent addDestination() { //3\r\n MessageDestinationComponent\
244
+ \ t = new MessageDestinationComponent();\r\n if (this.destination == null)\r\
245
+ \n this.destination = new ArrayList<MessageDestinationComponent>();\r\n\
246
+ \ this.destination.add(t);\r\n return t;\r\n }"
247
+ pipeline_tag: sentence-similarity
248
+ library_name: sentence-transformers
249
+ ---
250
+
251
+ # SentenceTransformer based on Shuu12121/CodeModernBERT-Crow
252
+
253
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
254
+
255
+ ## Model Details
256
+
257
+ ### Model Description
258
+ - **Model Type:** Sentence Transformer
259
+ - **Base model:** [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow) <!-- at revision 69dc7bd7a418b18011047cf48670e7eb0b499651 -->
260
+ - **Maximum Sequence Length:** 1024 tokens
261
+ - **Output Dimensionality:** 768 dimensions
262
+ - **Similarity Function:** Cosine Similarity
263
+ <!-- - **Training Dataset:** Unknown -->
264
+ <!-- - **Language:** Unknown -->
265
+ <!-- - **License:** Unknown -->
266
+
267
+ ### Model Sources
268
+
269
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
270
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
271
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
272
+
273
+ ### Full Model Architecture
274
+
275
+ ```
276
+ SentenceTransformer(
277
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
278
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
279
+ )
280
+ ```
281
+
282
+ ## Usage
283
+
284
+ ### Direct Usage (Sentence Transformers)
285
+
286
+ First install the Sentence Transformers library:
287
+
288
+ ```bash
289
+ pip install -U sentence-transformers
290
+ ```
291
+
292
+ Then you can load this model and run inference.
293
+ ```python
294
+ from sentence_transformers import SentenceTransformer
295
+
296
+ # Download from the 🤗 Hub
297
+ model = SentenceTransformer("sentence_transformers_model_id")
298
+ # Run inference
299
+ sentences = [
300
+ 'syntactic sugar',
301
+ 'public MessageDestinationComponent addDestination() { //3\r\n MessageDestinationComponent t = new MessageDestinationComponent();\r\n if (this.destination == null)\r\n this.destination = new ArrayList<MessageDestinationComponent>();\r\n this.destination.add(t);\r\n return t;\r\n }',
302
+ 'function Concept(concept) {\n if (!(concept.prefLabel && concept.id && concept.type === \'Concept\')) {\n throw new Error(\'Invalid concept: "\' + concept.id + \'"\');\n }\n this.id = concept.id;\n this.prefLabel = concept.prefLabel;\n this.altLabel = concept.altLabel;\n this.hiddenLabel = concept.hiddenLabel;\n this.definition = concept.definition;\n this._topConceptOf = concept.topConceptOf;\n this._partOfScheme = false;\n this._originalConcept = concept;\n this._broaderConcepts = [];\n this._narrowerConcepts = [];\n this._relatedConcepts = [];\n}',
303
+ ]
304
+ embeddings = model.encode(sentences)
305
+ print(embeddings.shape)
306
+ # [3, 768]
307
+
308
+ # Get the similarity scores for the embeddings
309
+ similarities = model.similarity(embeddings, embeddings)
310
+ print(similarities.shape)
311
+ # [3, 3]
312
+ ```
313
+
314
+ <!--
315
+ ### Direct Usage (Transformers)
316
+
317
+ <details><summary>Click to see the direct usage in Transformers</summary>
318
+
319
+ </details>
320
+ -->
321
+
322
+ <!--
323
+ ### Downstream Usage (Sentence Transformers)
324
+
325
+ You can finetune this model on your own dataset.
326
+
327
+ <details><summary>Click to expand</summary>
328
+
329
+ </details>
330
+ -->
331
+
332
+ <!--
333
+ ### Out-of-Scope Use
334
+
335
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
336
+ -->
337
+
338
+ <!--
339
+ ## Bias, Risks and Limitations
340
+
341
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
342
+ -->
343
+
344
+ <!--
345
+ ### Recommendations
346
+
347
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
348
+ -->
349
+
350
+ ## Training Details
351
+
352
+ ### Training Dataset
353
+
354
+ #### Unnamed Dataset
355
+
356
+ * Size: 1,761,493 training samples
357
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
358
+ * Approximate statistics based on the first 1000 samples:
359
+ | | sentence_0 | sentence_1 | label |
360
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
361
+ | type | string | string | float |
362
+ | details | <ul><li>min: 3 tokens</li><li>mean: 48.06 tokens</li><li>max: 914 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 183.37 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
363
+ * Samples:
364
+ | sentence_0 | sentence_1 | label |
365
+ |:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
366
+ | <code>// NewMockUnit creates a new mock instance</code> | <code>func NewMockUnit(ctrl *gomock.Controller) *MockUnit {<br> mock := &MockUnit{ctrl: ctrl}<br> mock.recorder = &MockUnitMockRecorder{mock}<br> return mock<br>}</code> | <code>1.0</code> |
367
+ | <code>// SetNextPageToken sets the NextPageToken field's value.</code> | <code>func (s *ListBudgetsForResourceOutput) SetNextPageToken(v string) *ListBudgetsForResourceOutput {<br> s.NextPageToken = &v<br> return s<br>}</code> | <code>1.0</code> |
368
+ | <code>// addHandler adds a handler for a puType/event.</code> | <code>func (r *registerer) addHandler(puType common.PUType, event common.Event, handler common.EventHandler) {<br> r.handlers[puType][event] = handler<br>}</code> | <code>1.0</code> |
369
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
370
+ ```json
371
+ {
372
+ "scale": 20.0,
373
+ "similarity_fct": "cos_sim"
374
+ }
375
+ ```
376
+
377
+ ### Training Hyperparameters
378
+ #### Non-Default Hyperparameters
379
+
380
+ - `per_device_train_batch_size`: 256
381
+ - `per_device_eval_batch_size`: 256
382
+ - `num_train_epochs`: 5
383
+ - `fp16`: True
384
+ - `multi_dataset_batch_sampler`: round_robin
385
+
386
+ #### All Hyperparameters
387
+ <details><summary>Click to expand</summary>
388
+
389
+ - `overwrite_output_dir`: False
390
+ - `do_predict`: False
391
+ - `eval_strategy`: no
392
+ - `prediction_loss_only`: True
393
+ - `per_device_train_batch_size`: 256
394
+ - `per_device_eval_batch_size`: 256
395
+ - `per_gpu_train_batch_size`: None
396
+ - `per_gpu_eval_batch_size`: None
397
+ - `gradient_accumulation_steps`: 1
398
+ - `eval_accumulation_steps`: None
399
+ - `torch_empty_cache_steps`: None
400
+ - `learning_rate`: 5e-05
401
+ - `weight_decay`: 0.0
402
+ - `adam_beta1`: 0.9
403
+ - `adam_beta2`: 0.999
404
+ - `adam_epsilon`: 1e-08
405
+ - `max_grad_norm`: 1
406
+ - `num_train_epochs`: 5
407
+ - `max_steps`: -1
408
+ - `lr_scheduler_type`: linear
409
+ - `lr_scheduler_kwargs`: {}
410
+ - `warmup_ratio`: 0.0
411
+ - `warmup_steps`: 0
412
+ - `log_level`: passive
413
+ - `log_level_replica`: warning
414
+ - `log_on_each_node`: True
415
+ - `logging_nan_inf_filter`: True
416
+ - `save_safetensors`: True
417
+ - `save_on_each_node`: False
418
+ - `save_only_model`: False
419
+ - `restore_callback_states_from_checkpoint`: False
420
+ - `no_cuda`: False
421
+ - `use_cpu`: False
422
+ - `use_mps_device`: False
423
+ - `seed`: 42
424
+ - `data_seed`: None
425
+ - `jit_mode_eval`: False
426
+ - `use_ipex`: False
427
+ - `bf16`: False
428
+ - `fp16`: True
429
+ - `fp16_opt_level`: O1
430
+ - `half_precision_backend`: auto
431
+ - `bf16_full_eval`: False
432
+ - `fp16_full_eval`: False
433
+ - `tf32`: None
434
+ - `local_rank`: 0
435
+ - `ddp_backend`: None
436
+ - `tpu_num_cores`: None
437
+ - `tpu_metrics_debug`: False
438
+ - `debug`: []
439
+ - `dataloader_drop_last`: False
440
+ - `dataloader_num_workers`: 0
441
+ - `dataloader_prefetch_factor`: None
442
+ - `past_index`: -1
443
+ - `disable_tqdm`: False
444
+ - `remove_unused_columns`: True
445
+ - `label_names`: None
446
+ - `load_best_model_at_end`: False
447
+ - `ignore_data_skip`: False
448
+ - `fsdp`: []
449
+ - `fsdp_min_num_params`: 0
450
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
451
+ - `tp_size`: 0
452
+ - `fsdp_transformer_layer_cls_to_wrap`: None
453
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
454
+ - `deepspeed`: None
455
+ - `label_smoothing_factor`: 0.0
456
+ - `optim`: adamw_torch
457
+ - `optim_args`: None
458
+ - `adafactor`: False
459
+ - `group_by_length`: False
460
+ - `length_column_name`: length
461
+ - `ddp_find_unused_parameters`: None
462
+ - `ddp_bucket_cap_mb`: None
463
+ - `ddp_broadcast_buffers`: False
464
+ - `dataloader_pin_memory`: True
465
+ - `dataloader_persistent_workers`: False
466
+ - `skip_memory_metrics`: True
467
+ - `use_legacy_prediction_loop`: False
468
+ - `push_to_hub`: False
469
+ - `resume_from_checkpoint`: None
470
+ - `hub_model_id`: None
471
+ - `hub_strategy`: every_save
472
+ - `hub_private_repo`: None
473
+ - `hub_always_push`: False
474
+ - `gradient_checkpointing`: False
475
+ - `gradient_checkpointing_kwargs`: None
476
+ - `include_inputs_for_metrics`: False
477
+ - `include_for_metrics`: []
478
+ - `eval_do_concat_batches`: True
479
+ - `fp16_backend`: auto
480
+ - `push_to_hub_model_id`: None
481
+ - `push_to_hub_organization`: None
482
+ - `mp_parameters`:
483
+ - `auto_find_batch_size`: False
484
+ - `full_determinism`: False
485
+ - `torchdynamo`: None
486
+ - `ray_scope`: last
487
+ - `ddp_timeout`: 1800
488
+ - `torch_compile`: False
489
+ - `torch_compile_backend`: None
490
+ - `torch_compile_mode`: None
491
+ - `include_tokens_per_second`: False
492
+ - `include_num_input_tokens_seen`: False
493
+ - `neftune_noise_alpha`: None
494
+ - `optim_target_modules`: None
495
+ - `batch_eval_metrics`: False
496
+ - `eval_on_start`: False
497
+ - `use_liger_kernel`: False
498
+ - `eval_use_gather_object`: False
499
+ - `average_tokens_across_devices`: False
500
+ - `prompts`: None
501
+ - `batch_sampler`: batch_sampler
502
+ - `multi_dataset_batch_sampler`: round_robin
503
+
504
+ </details>
505
+
506
+ ### Training Logs
507
+ | Epoch | Step | Training Loss |
508
+ |:------:|:-----:|:-------------:|
509
+ | 0.0727 | 500 | 0.7681 |
510
+ | 0.1453 | 1000 | 0.1157 |
511
+ | 0.2180 | 1500 | 0.1068 |
512
+ | 0.2907 | 2000 | 0.0979 |
513
+ | 0.3633 | 2500 | 0.0969 |
514
+ | 0.4360 | 3000 | 0.0945 |
515
+ | 0.5086 | 3500 | 0.0918 |
516
+ | 0.5813 | 4000 | 0.0905 |
517
+ | 0.6540 | 4500 | 0.088 |
518
+ | 0.7266 | 5000 | 0.0854 |
519
+ | 0.7993 | 5500 | 0.0855 |
520
+ | 0.8720 | 6000 | 0.0873 |
521
+ | 0.9446 | 6500 | 0.082 |
522
+ | 1.0173 | 7000 | 0.0728 |
523
+ | 1.0900 | 7500 | 0.0427 |
524
+ | 1.1626 | 8000 | 0.0435 |
525
+ | 1.2353 | 8500 | 0.0441 |
526
+ | 1.3079 | 9000 | 0.045 |
527
+ | 1.3806 | 9500 | 0.0444 |
528
+ | 1.4533 | 10000 | 0.0433 |
529
+ | 1.5259 | 10500 | 0.0447 |
530
+ | 1.5986 | 11000 | 0.0443 |
531
+ | 1.6713 | 11500 | 0.0439 |
532
+ | 1.7439 | 12000 | 0.0449 |
533
+ | 1.8166 | 12500 | 0.0441 |
534
+ | 1.8893 | 13000 | 0.0443 |
535
+ | 1.9619 | 13500 | 0.0461 |
536
+ | 2.0346 | 14000 | 0.0335 |
537
+ | 2.1073 | 14500 | 0.0192 |
538
+ | 2.1799 | 15000 | 0.0199 |
539
+ | 2.2526 | 15500 | 0.0197 |
540
+ | 2.3252 | 16000 | 0.0199 |
541
+ | 2.3979 | 16500 | 0.02 |
542
+ | 2.4706 | 17000 | 0.0206 |
543
+ | 2.5432 | 17500 | 0.0204 |
544
+ | 2.6159 | 18000 | 0.0202 |
545
+ | 2.6886 | 18500 | 0.0206 |
546
+ | 2.7612 | 19000 | 0.0209 |
547
+ | 2.8339 | 19500 | 0.0211 |
548
+ | 2.9066 | 20000 | 0.0207 |
549
+ | 2.9792 | 20500 | 0.0202 |
550
+ | 3.0519 | 21000 | 0.014 |
551
+ | 3.1245 | 21500 | 0.0112 |
552
+ | 3.1972 | 22000 | 0.0111 |
553
+ | 3.2699 | 22500 | 0.0113 |
554
+ | 3.3425 | 23000 | 0.0117 |
555
+ | 3.4152 | 23500 | 0.0116 |
556
+ | 3.4879 | 24000 | 0.0118 |
557
+ | 3.5605 | 24500 | 0.0114 |
558
+ | 3.6332 | 25000 | 0.0114 |
559
+ | 3.7059 | 25500 | 0.011 |
560
+ | 3.7785 | 26000 | 0.0109 |
561
+ | 3.8512 | 26500 | 0.0113 |
562
+ | 3.9238 | 27000 | 0.0113 |
563
+ | 3.9965 | 27500 | 0.0111 |
564
+ | 4.0692 | 28000 | 0.0085 |
565
+ | 4.1418 | 28500 | 0.0081 |
566
+ | 4.2145 | 29000 | 0.0082 |
567
+ | 4.2872 | 29500 | 0.0083 |
568
+ | 4.3598 | 30000 | 0.0085 |
569
+ | 4.4325 | 30500 | 0.0086 |
570
+ | 4.5052 | 31000 | 0.0082 |
571
+ | 4.5778 | 31500 | 0.0083 |
572
+ | 4.6505 | 32000 | 0.0084 |
573
+ | 4.7232 | 32500 | 0.0085 |
574
+ | 4.7958 | 33000 | 0.0083 |
575
+ | 4.8685 | 33500 | 0.0082 |
576
+ | 4.9411 | 34000 | 0.0081 |
577
+
578
+
579
+ ### Framework Versions
580
+ - Python: 3.11.12
581
+ - Sentence Transformers: 3.4.1
582
+ - Transformers: 4.51.3
583
+ - PyTorch: 2.6.0+cu124
584
+ - Accelerate: 1.5.2
585
+ - Datasets: 3.5.0
586
+ - Tokenizers: 0.21.1
587
+
588
+ ## Citation
589
+
590
+ ### BibTeX
591
+
592
+ #### Sentence Transformers
593
+ ```bibtex
594
+ @inproceedings{reimers-2019-sentence-bert,
595
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
596
+ author = "Reimers, Nils and Gurevych, Iryna",
597
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
598
+ month = "11",
599
+ year = "2019",
600
+ publisher = "Association for Computational Linguistics",
601
+ url = "https://arxiv.org/abs/1908.10084",
602
+ }
603
+ ```
604
+
605
+ #### MultipleNegativesRankingLoss
606
+ ```bibtex
607
+ @misc{henderson2017efficient,
608
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
609
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
610
+ year={2017},
611
+ eprint={1705.00652},
612
+ archivePrefix={arXiv},
613
+ primaryClass={cs.CL}
614
+ }
615
+ ```
616
+
617
+ <!--
618
+ ## Glossary
619
+
620
+ *Clearly define terms in order to be accessible across audiences.*
621
+ -->
622
+
623
+ <!--
624
+ ## Model Card Authors
625
+
626
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
627
+ -->
628
+
629
+ <!--
630
+ ## Model Card Contact
631
+
632
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
633
+ -->
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 50001,
3
+ "<mask>": 50003,
4
+ "<s>": 50000,
5
+ "<unk>": 50002
6
+ }
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 50000,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "cls",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50001,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "hidden_activation": "gelu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "local_attention": 128,
27
+ "local_attention_rope_theta": 10000,
28
+ "local_attention_window": 128,
29
+ "local_rope_theta": 10000.0,
30
+ "max_position_embeddings": 8192,
31
+ "mlp_bias": false,
32
+ "mlp_dropout": 0.0,
33
+ "model_type": "modernbert",
34
+ "norm_bias": false,
35
+ "norm_eps": 1e-05,
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "pad_token_id": 0,
39
+ "repad_logits_with_grad": false,
40
+ "rope_theta": 160000,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.51.3",
46
+ "type_vocab_size": 2,
47
+ "vocab_size": 50004
48
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:801a2a2608009baa7e661ca6a6206734f39954cf8a4af85409ffc70705094c68
3
+ size 606681112
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50000": {
45
+ "content": "<s>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50001": {
53
+ "content": "</s>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "50002": {
61
+ "content": "<unk>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "50003": {
69
+ "content": "<mask>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ }
76
+ },
77
+ "bos_token": "<s>",
78
+ "clean_up_tokenization_spaces": false,
79
+ "cls_token": "<s>",
80
+ "eos_token": "</s>",
81
+ "errors": "replace",
82
+ "extra_special_tokens": {},
83
+ "mask_token": "<mask>",
84
+ "max_length": null,
85
+ "model_max_length": 1000000000000000019884624838656,
86
+ "pad_to_multiple_of": null,
87
+ "pad_token": "[PAD]",
88
+ "pad_token_type_id": 0,
89
+ "padding_side": "right",
90
+ "sep_token": "</s>",
91
+ "stride": 0,
92
+ "tokenizer_class": "RobertaTokenizer",
93
+ "trim_offsets": true,
94
+ "truncation_side": "right",
95
+ "truncation_strategy": "longest_first",
96
+ "unk_token": "<unk>"
97
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff