Upload ModernBERT model
Browse files- 1_Pooling/config.json +10 -0
- README.md +633 -0
- added_tokens.json +6 -0
- config.json +48 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +97 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:1761493
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: Shuu12121/CodeModernBERT-Crow
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'getAttachment
|
12 |
+
|
13 |
+
Return an attachment from a SharePoint list item
|
14 |
+
|
15 |
+
|
16 |
+
@param $list_name Name of list
|
17 |
+
|
18 |
+
@param $list_item_id ID of record item is attached to
|
19 |
+
|
20 |
+
@return Array of attachment urls'
|
21 |
+
sentences:
|
22 |
+
- "private function getOrderDirection(): string\n {\n $result = !empty($this->searchData['sort_by_order'])\
|
23 |
+
\ ?\n $this->searchData['sort_by_order'] :\n Options::DEFAULT_SORT_BY_ORDER;\n\
|
24 |
+
\n return $result;\n }"
|
25 |
+
- "function(property, value) {\n var values = [];\n for (var i in\
|
26 |
+
\ this._nodes) {\n if (this._nodes.hasOwnProperty(i)) {\n \
|
27 |
+
\ var n = this._nodes[i];\n if ((property in n && n[property]\
|
28 |
+
\ == value) || (n.data && value == n.data[property])) {\n values.push(n);\n\
|
29 |
+
\ }\n }\n }\n\n return (values.length)\
|
30 |
+
\ ? values : null;\n }"
|
31 |
+
- "public function getAttachments ($list_name, $list_item_id) {\n\t\t// Wrap in\
|
32 |
+
\ CAML\n\t\t$CAML = '\n\t\t<GetAttachmentCollection xmlns=\"http://schemas.microsoft.com/sharepoint/soap/\"\
|
33 |
+
>\n\t\t\t<listName>' . $list_name . '</listName>\n\t\t\t<listItemID>' . $list_item_id\
|
34 |
+
\ . '</listItemID>\n\t\t</GetAttachmentCollection>';\n\n\t\t$xmlvar = new \\SoapVar($CAML,\
|
35 |
+
\ XSD_ANYXML);\n\n\t\t// Attempt to run operation\n\t\ttry {\n\t\t\t$rawXml =\
|
36 |
+
\ $this->soapClient->GetAttachmentCollection($xmlvar)->GetAttachmentCollectionResult->any;\n\
|
37 |
+
\t\t} catch (\\SoapFault $fault) {\n\t\t\t$this->onError($fault);\n\t\t}\n\n\t\
|
38 |
+
\t// Load XML in to DOM document and grab all list items.\n\t\t$nodes = $this->getArrayFromElementsByTagName($rawXml,\
|
39 |
+
\ 'Attachment');\n\n\t\t$attachments = array();\n\n\t\t// Format data in to array\
|
40 |
+
\ or object\n\t\tforeach ($nodes as $counter => $node) {\n\t\t\t$attachments[]\
|
41 |
+
\ = $node->textContent;\n\t\t}\n\n\t\t// Return Array of attachment URLs\n\t\t\
|
42 |
+
return $attachments;\n\t}"
|
43 |
+
- source_sentence: 'Load the services into the module if they have
|
44 |
+
|
45 |
+
not loaded already
|
46 |
+
|
47 |
+
@param \OtherCode\FController\Components\Services $services
|
48 |
+
|
49 |
+
@param \OtherCode\FController\Components\Registry $storage
|
50 |
+
|
51 |
+
@param \OtherCode\FController\Components\Messages $messages'
|
52 |
+
sentences:
|
53 |
+
- "public function connect(\\OtherCode\\FController\\Components\\Services $services,\
|
54 |
+
\ \\OtherCode\\FController\\Components\\Registry $storage, \\OtherCode\\FController\\\
|
55 |
+
Components\\Messages $messages)\n {\n if (!isset($this->services)) {\n\
|
56 |
+
\ $this->services = $services;\n }\n\n if (!isset($this->storage))\
|
57 |
+
\ {\n $this->storage = $storage;\n }\n\n if (!isset($this->messages))\
|
58 |
+
\ {\n $this->messages = $messages;\n }\n }"
|
59 |
+
- "function(element) {\n var that = this;\n this.element = element;\n this.signalTap\
|
60 |
+
\ = new Listeners();\n this.signalLong = new Listeners();\n this.signalTouchstart\
|
61 |
+
\ = new Listeners();\n this.signalTouchend = new Listeners();\n this.signalMove\
|
62 |
+
\ = windowMove;\n this._touch = 0; // 0 = Nothing, 1 = Mouse, 2 = Touch.\n\
|
63 |
+
\ this._onMouseDown = function(evt) {\n if (that._touch) return;\n \
|
64 |
+
\ currentTouchListener = that;\n that._touch = 1;\n evt.preventDefault();\n\
|
65 |
+
\ evt.stopPropagation();\n var rect = that.element.getBoundingClientRect();\n\
|
66 |
+
\ var arg = {\n x: evt.pageX - rect.left,\n y: evt.pageY\
|
67 |
+
\ - rect.top,\n rect: rect\n };\n console.info(\"[tfw.touch-event]\
|
68 |
+
\ arg=...\", arg);\n that.signalTouchstart.fire(arg);\n };\n this._onTouchstart\
|
69 |
+
\ = function(evt) {\n if (that._touch) return;\n currentTouchListener\
|
70 |
+
\ = that;\n that._touch = 2;\n evt.preventDefault();\n evt.stopPropagation();\n\
|
71 |
+
\ var rect = that.element.getBoundingClientRect();\n var arg = {\n\
|
72 |
+
\ x: evt.pageX - rect.left,\n y: evt.pageY - rect.top,\n\
|
73 |
+
\ rect: rect\n };\n console.info(\"[tfw.touch-event]\
|
74 |
+
\ arg=...\", arg);\n that.signalTouchstart.fire(arg);\n };\n element.addEventListener(\"\
|
75 |
+
mousedown\", this._onMouseDown, false);\n}"
|
76 |
+
- "func (cfg *TransportConfig) WithBasePath(basePath string) *TransportConfig {\n\
|
77 |
+
\tcfg.BasePath = basePath\n\treturn cfg\n}"
|
78 |
+
- source_sentence: '// DirectoryValidator ensures the input is a valid and **existing**
|
79 |
+
directory
|
80 |
+
|
81 |
+
// Returns modified extended path'
|
82 |
+
sentences:
|
83 |
+
- "func DirectoryValidator(input string) (interface{}, error) {\n\tif input == \"\
|
84 |
+
\" {\n\t\treturn \"\", nil\n\t}\n\n\tpath, err := PathValidator(input)\n\tif err\
|
85 |
+
\ != nil {\n\t\treturn nil, err\n\t}\n\tpathStr := path.(string)\n\n\tinfo, err\
|
86 |
+
\ := os.Stat(pathStr)\n\tif err != nil {\n\t\treturn nil, err\n\t}\n\n\tif !info.IsDir()\
|
87 |
+
\ {\n\t\treturn nil, fmt.Errorf(\"%s is not a directory\", pathStr)\n\t}\n\n\t\
|
88 |
+
return pathStr, nil\n}"
|
89 |
+
- "public void addGivenVendor(String source, String name, String value, boolean\
|
90 |
+
\ regex, Confidence confidence) {\n givenVendor.add(new EvidenceMatcher(source,\
|
91 |
+
\ name, value, regex, confidence));\n }"
|
92 |
+
- "func (a *EnableArgs) SetMaxScriptsCacheSize(maxScriptsCacheSize float64) *EnableArgs\
|
93 |
+
\ {\n\ta.MaxScriptsCacheSize = &maxScriptsCacheSize\n\treturn a\n}"
|
94 |
+
- source_sentence: https://url.spec.whatwg.org/#url-miscellaneous
|
95 |
+
sentences:
|
96 |
+
- "public boolean isDescendent(TarEntry desc) {\r\n return desc.header.name.toString().startsWith(this.header.name.toString());\r\
|
97 |
+
\n }"
|
98 |
+
- "public String displayErrors(String pathPrefix) {\n\n if (pathPrefix ==\
|
99 |
+
\ null) {\n pathPrefix = \"\";\n }\n StringBuffer html\
|
100 |
+
\ = new StringBuffer(512);\n html.append(\"<table border='0' cellpadding='5'\
|
101 |
+
\ cellspacing='0' style='width: 100%; height: 100%;'>\");\n html.append(\"\
|
102 |
+
\\t<tr>\");\n html.append(\"\\t\\t<td style='vertical-align: middle; height:\
|
103 |
+
\ 100%;'>\");\n html.append(getHtmlPart(\"C_BLOCK_START\", \"Error\"));\n\
|
104 |
+
\ html.append(\"\\t\\t\\t<table border='0' cellpadding='0' cellspacing='0'\
|
105 |
+
\ style='width: 100%;'>\");\n html.append(\"\\t\\t\\t\\t<tr>\");\n \
|
106 |
+
\ html.append(\"\\t\\t\\t\\t\\t<td><img src='\").append(pathPrefix).append(\"\
|
107 |
+
resources/error.png' border='0'></td>\");\n html.append(\"\\t\\t\\t\\t\\\
|
108 |
+
t<td> </td>\");\n html.append(\"\\t\\t\\t\\t\\t<td style='width:\
|
109 |
+
\ 100%;'>\");\n\n Iterator<String> iter = getErrors().iterator();\n \
|
110 |
+
\ while (iter.hasNext()) {\n String msg = iter.next();\n \
|
111 |
+
\ html.append(\"\\t\\t\\t\\t\\t\\t\");\n html.append(msg);\n \
|
112 |
+
\ html.append(\"<br/>\");\n }\n\n html.append(\"\\t\\\
|
113 |
+
t\\t\\t\\t</td>\");\n html.append(\"\\t\\t\\t\\t</tr>\");\n html.append(\"\
|
114 |
+
\\t\\t\\t</table>\");\n html.append(getHtmlPart(\"C_BLOCK_END\"));\n \
|
115 |
+
\ html.append(\"\\t\\t</td>\");\n html.append(\"\\t</tr>\");\n \
|
116 |
+
\ html.append(\"</table>\");\n return html.toString();\n }"
|
117 |
+
- "function getDefaultPortFromScheme( scheme ) {\n var port = null;\n if ( scheme\
|
118 |
+
\ === 'ftp') {\n port = 21;\n }\n else if ( scheme === 'gopher' ) {\n \
|
119 |
+
\ port = 70;\n }\n else if ( scheme === 'http' || scheme === 'ws' ) {\n port\
|
120 |
+
\ = 80;\n }\n else if ( scheme === 'https' || scheme === 'wss' ) {\n port\
|
121 |
+
\ = 443;\n }\n return port;\n}"
|
122 |
+
- source_sentence: syntactic sugar
|
123 |
+
sentences:
|
124 |
+
- "@Override\n public void sawOpcode(int seen) {\n int groupId = -1;\n\
|
125 |
+
\n try {\n stack.precomputation(this);\n\n if (seen\
|
126 |
+
\ == Const.INVOKEINTERFACE) {\n String className = getClassConstantOperand();\n\
|
127 |
+
\ String methodName = getNameConstantOperand();\n \
|
128 |
+
\ String signature = getSigConstantOperand();\n QMethod methodInfo\
|
129 |
+
\ = new QMethod(methodName, signature);\n\n if (isCollection(className))\
|
130 |
+
\ {\n if (collectionMethods.contains(methodInfo) || ITERATOR.equals(methodInfo))\
|
131 |
+
\ {\n if (stack.getStackDepth() > 0) {\n \
|
132 |
+
\ OpcodeStack.Item itm = stack.getStackItem(0);\n \
|
133 |
+
\ groupId = findCollectionGroup(itm, true);\n \
|
134 |
+
\ }\n } else if (REMOVE.equals(methodInfo)) {\n \
|
135 |
+
\ if (stack.getStackDepth() > 1) {\n \
|
136 |
+
\ OpcodeStack.Item itm = stack.getStackItem(1);\n \
|
137 |
+
\ int id = findCollectionGroup(itm, true);\n if ((id\
|
138 |
+
\ >= 0) && collectionGroups.get(id).isStandardCollection()) {\n \
|
139 |
+
\ Integer it = groupToIterator.get(Integer.valueOf(id));\n \
|
140 |
+
\ Loop loop = loops.get(it);\n \
|
141 |
+
\ if (loop != null) {\n int pc\
|
142 |
+
\ = getPC();\n if (loop.hasPC(pc)) {\n \
|
143 |
+
\ boolean needPop = !Values.SIG_VOID.equals(SignatureUtils.getReturnSignature(signature));\n\
|
144 |
+
\n if (!breakFollows(loop, needPop) &&\
|
145 |
+
\ !returnFollows(needPop)) {\n bugReporter.reportBug(new\
|
146 |
+
\ BugInstance(this, BugType.DWI_DELETING_WHILE_ITERATING.name(), NORMAL_PRIORITY)\n\
|
147 |
+
\ .addClass(this).addMethod(this).addSourceLine(this));\n\
|
148 |
+
\ }\n \
|
149 |
+
\ }\n }\n }\n \
|
150 |
+
\ }\n } else {\n \
|
151 |
+
\ Integer numArgs = modifyingMethods.get(methodInfo);\n \
|
152 |
+
\ if ((numArgs != null) && (stack.getStackDepth() > numArgs.intValue())) {\n\
|
153 |
+
\ OpcodeStack.Item itm = stack.getStackItem(numArgs.intValue());\n\
|
154 |
+
\ int id = findCollectionGroup(itm, true);\n \
|
155 |
+
\ if (id >= 0) {\n Integer\
|
156 |
+
\ it = groupToIterator.get(Integer.valueOf(id));\n \
|
157 |
+
\ if (it != null) {\n Loop loop = loops.get(it);\n\
|
158 |
+
\ if (loop != null) {\n \
|
159 |
+
\ int pc = getPC();\n \
|
160 |
+
\ if (loop.hasPC(pc)) {\n boolean\
|
161 |
+
\ needPop = !Values.SIG_VOID.equals(SignatureUtils.getReturnSignature(signature));\n\
|
162 |
+
\ boolean breakFollows = breakFollows(loop,\
|
163 |
+
\ needPop);\n boolean returnFollows\
|
164 |
+
\ = !breakFollows && returnFollows(needPop);\n\n \
|
165 |
+
\ if (!breakFollows && !returnFollows) {\n \
|
166 |
+
\ bugReporter.reportBug(new BugInstance(this, BugType.DWI_MODIFYING_WHILE_ITERATING.name(),\
|
167 |
+
\ NORMAL_PRIORITY)\n .addClass(this).addMethod(this).addSourceLine(this));\n\
|
168 |
+
\ }\n \
|
169 |
+
\ }\n }\n \
|
170 |
+
\ }\n }\n }\n \
|
171 |
+
\ }\n } else if (\"java/util/Iterator\".equals(className)\
|
172 |
+
\ && HASNEXT.equals(methodInfo) && (stack.getStackDepth() > 0)) {\n \
|
173 |
+
\ OpcodeStack.Item itm = stack.getStackItem(0);\n \
|
174 |
+
\ Integer id = (Integer) itm.getUserValue();\n if (id != null)\
|
175 |
+
\ {\n groupId = id.intValue();\n }\n\
|
176 |
+
\ }\n } else if ((seen == Const.PUTFIELD) || (seen ==\
|
177 |
+
\ Const.PUTSTATIC)) {\n if (stack.getStackDepth() > 1) {\n \
|
178 |
+
\ OpcodeStack.Item itm = stack.getStackItem(0);\n\n \
|
179 |
+
\ Integer id = (Integer) itm.getUserValue();\n if (id\
|
180 |
+
\ == null) {\n FieldAnnotation fa = FieldAnnotation\n \
|
181 |
+
\ .fromFieldDescriptor(new FieldDescriptor(getClassConstantOperand(),\
|
182 |
+
\ getNameConstantOperand(), getSigConstantOperand(), false));\n \
|
183 |
+
\ itm = new OpcodeStack.Item(itm.getSignature(), fa, stack.getStackItem(1).getRegisterNumber());\n\
|
184 |
+
\ removeFromCollectionGroup(itm);\n \
|
185 |
+
\ groupId = findCollectionGroup(itm, true);\n }\n \
|
186 |
+
\ }\n } else if (OpcodeUtils.isAStore(seen)) {\n \
|
187 |
+
\ if (stack.getStackDepth() > 0) {\n OpcodeStack.Item\
|
188 |
+
\ itm = stack.getStackItem(0);\n Integer id = (Integer) itm.getUserValue();\n\
|
189 |
+
\ if (id != null) {\n int reg = RegisterUtils.getAStoreReg(this,\
|
190 |
+
\ seen);\n\n try {\n JavaClass\
|
191 |
+
\ cls = itm.getJavaClass();\n if ((cls != null) &&\
|
192 |
+
\ cls.implementationOf(iteratorClass)) {\n Integer\
|
193 |
+
\ regIt = Integer.valueOf(reg);\n Iterator<Integer>\
|
194 |
+
\ curIt = groupToIterator.values().iterator();\n \
|
195 |
+
\ while (curIt.hasNext()) {\n if (curIt.next().equals(regIt))\
|
196 |
+
\ {\n curIt.remove();\n \
|
197 |
+
\ }\n }\n \
|
198 |
+
\ groupToIterator.put(id, regIt);\n }\n\
|
199 |
+
\n GroupPair pair = collectionGroups.get(id.intValue());\n\
|
200 |
+
\ if (pair != null) {\n \
|
201 |
+
\ pair.addMember(Integer.valueOf(reg));\n }\n \
|
202 |
+
\ } catch (ClassNotFoundException cnfe) {\n \
|
203 |
+
\ bugReporter.reportMissingClass(cnfe);\n \
|
204 |
+
\ }\n } else {\n String cls = itm.getSignature();\n\
|
205 |
+
\ if ((cls != null) && cls.startsWith(Values.SIG_QUALIFIED_CLASS_PREFIX))\
|
206 |
+
\ {\n cls = SignatureUtils.trimSignature(cls);\n \
|
207 |
+
\ if (isCollection(cls) || \"java/util/Iterator\".equals(cls))\
|
208 |
+
\ {\n int reg = RegisterUtils.getAStoreReg(this,\
|
209 |
+
\ seen);\n removeFromCollectionGroup(new OpcodeStack.Item(itm,\
|
210 |
+
\ reg));\n Iterator<Integer> it = groupToIterator.values().iterator();\n\
|
211 |
+
\ while (it.hasNext()) {\n \
|
212 |
+
\ if (it.next().intValue() == reg) {\n \
|
213 |
+
\ it.remove();\n break;\n\
|
214 |
+
\ }\n }\n \
|
215 |
+
\ }\n }\n }\n\
|
216 |
+
\ }\n } else if (OpcodeUtils.isALoad(seen)) {\n \
|
217 |
+
\ int reg = RegisterUtils.getALoadReg(this, seen);\n \
|
218 |
+
\ OpcodeStack.Item itm = new OpcodeStack.Item(new OpcodeStack.Item(), reg);\n\
|
219 |
+
\ groupId = findCollectionGroup(itm, false);\n } else\
|
220 |
+
\ if ((seen == Const.IFEQ) && (stack.getStackDepth() > 0)) {\n \
|
221 |
+
\ OpcodeStack.Item itm = stack.getStackItem(0);\n Integer id =\
|
222 |
+
\ (Integer) itm.getUserValue();\n if (id != null) {\n \
|
223 |
+
\ int target = getBranchTarget();\n int gotoAddr\
|
224 |
+
\ = target - 3;\n int ins = getCode().getCode()[gotoAddr];\n\
|
225 |
+
\ if (ins < 0) {\n ins = 256 + ins;\n\
|
226 |
+
\ }\n if ((ins == Const.GOTO) || (ins ==\
|
227 |
+
\ Const.GOTO_W)) {\n Integer reg = groupToIterator.get(id);\n\
|
228 |
+
\ if (reg != null) {\n loops.put(reg,\
|
229 |
+
\ new Loop(getPC(), gotoAddr));\n }\n \
|
230 |
+
\ }\n }\n }\n } finally {\n TernaryPatcher.pre(stack,\
|
231 |
+
\ seen);\n stack.sawOpcode(this, seen);\n TernaryPatcher.post(stack,\
|
232 |
+
\ seen);\n if ((groupId >= 0) && (stack.getStackDepth() > 0)) {\n \
|
233 |
+
\ OpcodeStack.Item itm = stack.getStackItem(0);\n \
|
234 |
+
\ itm.setUserValue(Integer.valueOf(groupId));\n }\n\n processEndOfScopes(Integer.valueOf(getPC()));\n\
|
235 |
+
\ }\n }"
|
236 |
+
- "function Concept(concept) {\n if (!(concept.prefLabel && concept.id && concept.type\
|
237 |
+
\ === 'Concept')) {\n throw new Error('Invalid concept: \"' + concept.id +\
|
238 |
+
\ '\"');\n }\n this.id = concept.id;\n this.prefLabel = concept.prefLabel;\n\
|
239 |
+
\ this.altLabel = concept.altLabel;\n this.hiddenLabel = concept.hiddenLabel;\n\
|
240 |
+
\ this.definition = concept.definition;\n this._topConceptOf = concept.topConceptOf;\n\
|
241 |
+
\ this._partOfScheme = false;\n this._originalConcept = concept;\n this._broaderConcepts\
|
242 |
+
\ = [];\n this._narrowerConcepts = [];\n this._relatedConcepts = [];\n}"
|
243 |
+
- "public MessageDestinationComponent addDestination() { //3\r\n MessageDestinationComponent\
|
244 |
+
\ t = new MessageDestinationComponent();\r\n if (this.destination == null)\r\
|
245 |
+
\n this.destination = new ArrayList<MessageDestinationComponent>();\r\n\
|
246 |
+
\ this.destination.add(t);\r\n return t;\r\n }"
|
247 |
+
pipeline_tag: sentence-similarity
|
248 |
+
library_name: sentence-transformers
|
249 |
+
---
|
250 |
+
|
251 |
+
# SentenceTransformer based on Shuu12121/CodeModernBERT-Crow
|
252 |
+
|
253 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
254 |
+
|
255 |
+
## Model Details
|
256 |
+
|
257 |
+
### Model Description
|
258 |
+
- **Model Type:** Sentence Transformer
|
259 |
+
- **Base model:** [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow) <!-- at revision 69dc7bd7a418b18011047cf48670e7eb0b499651 -->
|
260 |
+
- **Maximum Sequence Length:** 1024 tokens
|
261 |
+
- **Output Dimensionality:** 768 dimensions
|
262 |
+
- **Similarity Function:** Cosine Similarity
|
263 |
+
<!-- - **Training Dataset:** Unknown -->
|
264 |
+
<!-- - **Language:** Unknown -->
|
265 |
+
<!-- - **License:** Unknown -->
|
266 |
+
|
267 |
+
### Model Sources
|
268 |
+
|
269 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
270 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
271 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
272 |
+
|
273 |
+
### Full Model Architecture
|
274 |
+
|
275 |
+
```
|
276 |
+
SentenceTransformer(
|
277 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
278 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
279 |
+
)
|
280 |
+
```
|
281 |
+
|
282 |
+
## Usage
|
283 |
+
|
284 |
+
### Direct Usage (Sentence Transformers)
|
285 |
+
|
286 |
+
First install the Sentence Transformers library:
|
287 |
+
|
288 |
+
```bash
|
289 |
+
pip install -U sentence-transformers
|
290 |
+
```
|
291 |
+
|
292 |
+
Then you can load this model and run inference.
|
293 |
+
```python
|
294 |
+
from sentence_transformers import SentenceTransformer
|
295 |
+
|
296 |
+
# Download from the 🤗 Hub
|
297 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
298 |
+
# Run inference
|
299 |
+
sentences = [
|
300 |
+
'syntactic sugar',
|
301 |
+
'public MessageDestinationComponent addDestination() { //3\r\n MessageDestinationComponent t = new MessageDestinationComponent();\r\n if (this.destination == null)\r\n this.destination = new ArrayList<MessageDestinationComponent>();\r\n this.destination.add(t);\r\n return t;\r\n }',
|
302 |
+
'function Concept(concept) {\n if (!(concept.prefLabel && concept.id && concept.type === \'Concept\')) {\n throw new Error(\'Invalid concept: "\' + concept.id + \'"\');\n }\n this.id = concept.id;\n this.prefLabel = concept.prefLabel;\n this.altLabel = concept.altLabel;\n this.hiddenLabel = concept.hiddenLabel;\n this.definition = concept.definition;\n this._topConceptOf = concept.topConceptOf;\n this._partOfScheme = false;\n this._originalConcept = concept;\n this._broaderConcepts = [];\n this._narrowerConcepts = [];\n this._relatedConcepts = [];\n}',
|
303 |
+
]
|
304 |
+
embeddings = model.encode(sentences)
|
305 |
+
print(embeddings.shape)
|
306 |
+
# [3, 768]
|
307 |
+
|
308 |
+
# Get the similarity scores for the embeddings
|
309 |
+
similarities = model.similarity(embeddings, embeddings)
|
310 |
+
print(similarities.shape)
|
311 |
+
# [3, 3]
|
312 |
+
```
|
313 |
+
|
314 |
+
<!--
|
315 |
+
### Direct Usage (Transformers)
|
316 |
+
|
317 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
318 |
+
|
319 |
+
</details>
|
320 |
+
-->
|
321 |
+
|
322 |
+
<!--
|
323 |
+
### Downstream Usage (Sentence Transformers)
|
324 |
+
|
325 |
+
You can finetune this model on your own dataset.
|
326 |
+
|
327 |
+
<details><summary>Click to expand</summary>
|
328 |
+
|
329 |
+
</details>
|
330 |
+
-->
|
331 |
+
|
332 |
+
<!--
|
333 |
+
### Out-of-Scope Use
|
334 |
+
|
335 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
336 |
+
-->
|
337 |
+
|
338 |
+
<!--
|
339 |
+
## Bias, Risks and Limitations
|
340 |
+
|
341 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
342 |
+
-->
|
343 |
+
|
344 |
+
<!--
|
345 |
+
### Recommendations
|
346 |
+
|
347 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
348 |
+
-->
|
349 |
+
|
350 |
+
## Training Details
|
351 |
+
|
352 |
+
### Training Dataset
|
353 |
+
|
354 |
+
#### Unnamed Dataset
|
355 |
+
|
356 |
+
* Size: 1,761,493 training samples
|
357 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
358 |
+
* Approximate statistics based on the first 1000 samples:
|
359 |
+
| | sentence_0 | sentence_1 | label |
|
360 |
+
|:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
361 |
+
| type | string | string | float |
|
362 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 48.06 tokens</li><li>max: 914 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 183.37 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
363 |
+
* Samples:
|
364 |
+
| sentence_0 | sentence_1 | label |
|
365 |
+
|:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
366 |
+
| <code>// NewMockUnit creates a new mock instance</code> | <code>func NewMockUnit(ctrl *gomock.Controller) *MockUnit {<br> mock := &MockUnit{ctrl: ctrl}<br> mock.recorder = &MockUnitMockRecorder{mock}<br> return mock<br>}</code> | <code>1.0</code> |
|
367 |
+
| <code>// SetNextPageToken sets the NextPageToken field's value.</code> | <code>func (s *ListBudgetsForResourceOutput) SetNextPageToken(v string) *ListBudgetsForResourceOutput {<br> s.NextPageToken = &v<br> return s<br>}</code> | <code>1.0</code> |
|
368 |
+
| <code>// addHandler adds a handler for a puType/event.</code> | <code>func (r *registerer) addHandler(puType common.PUType, event common.Event, handler common.EventHandler) {<br> r.handlers[puType][event] = handler<br>}</code> | <code>1.0</code> |
|
369 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
370 |
+
```json
|
371 |
+
{
|
372 |
+
"scale": 20.0,
|
373 |
+
"similarity_fct": "cos_sim"
|
374 |
+
}
|
375 |
+
```
|
376 |
+
|
377 |
+
### Training Hyperparameters
|
378 |
+
#### Non-Default Hyperparameters
|
379 |
+
|
380 |
+
- `per_device_train_batch_size`: 256
|
381 |
+
- `per_device_eval_batch_size`: 256
|
382 |
+
- `num_train_epochs`: 5
|
383 |
+
- `fp16`: True
|
384 |
+
- `multi_dataset_batch_sampler`: round_robin
|
385 |
+
|
386 |
+
#### All Hyperparameters
|
387 |
+
<details><summary>Click to expand</summary>
|
388 |
+
|
389 |
+
- `overwrite_output_dir`: False
|
390 |
+
- `do_predict`: False
|
391 |
+
- `eval_strategy`: no
|
392 |
+
- `prediction_loss_only`: True
|
393 |
+
- `per_device_train_batch_size`: 256
|
394 |
+
- `per_device_eval_batch_size`: 256
|
395 |
+
- `per_gpu_train_batch_size`: None
|
396 |
+
- `per_gpu_eval_batch_size`: None
|
397 |
+
- `gradient_accumulation_steps`: 1
|
398 |
+
- `eval_accumulation_steps`: None
|
399 |
+
- `torch_empty_cache_steps`: None
|
400 |
+
- `learning_rate`: 5e-05
|
401 |
+
- `weight_decay`: 0.0
|
402 |
+
- `adam_beta1`: 0.9
|
403 |
+
- `adam_beta2`: 0.999
|
404 |
+
- `adam_epsilon`: 1e-08
|
405 |
+
- `max_grad_norm`: 1
|
406 |
+
- `num_train_epochs`: 5
|
407 |
+
- `max_steps`: -1
|
408 |
+
- `lr_scheduler_type`: linear
|
409 |
+
- `lr_scheduler_kwargs`: {}
|
410 |
+
- `warmup_ratio`: 0.0
|
411 |
+
- `warmup_steps`: 0
|
412 |
+
- `log_level`: passive
|
413 |
+
- `log_level_replica`: warning
|
414 |
+
- `log_on_each_node`: True
|
415 |
+
- `logging_nan_inf_filter`: True
|
416 |
+
- `save_safetensors`: True
|
417 |
+
- `save_on_each_node`: False
|
418 |
+
- `save_only_model`: False
|
419 |
+
- `restore_callback_states_from_checkpoint`: False
|
420 |
+
- `no_cuda`: False
|
421 |
+
- `use_cpu`: False
|
422 |
+
- `use_mps_device`: False
|
423 |
+
- `seed`: 42
|
424 |
+
- `data_seed`: None
|
425 |
+
- `jit_mode_eval`: False
|
426 |
+
- `use_ipex`: False
|
427 |
+
- `bf16`: False
|
428 |
+
- `fp16`: True
|
429 |
+
- `fp16_opt_level`: O1
|
430 |
+
- `half_precision_backend`: auto
|
431 |
+
- `bf16_full_eval`: False
|
432 |
+
- `fp16_full_eval`: False
|
433 |
+
- `tf32`: None
|
434 |
+
- `local_rank`: 0
|
435 |
+
- `ddp_backend`: None
|
436 |
+
- `tpu_num_cores`: None
|
437 |
+
- `tpu_metrics_debug`: False
|
438 |
+
- `debug`: []
|
439 |
+
- `dataloader_drop_last`: False
|
440 |
+
- `dataloader_num_workers`: 0
|
441 |
+
- `dataloader_prefetch_factor`: None
|
442 |
+
- `past_index`: -1
|
443 |
+
- `disable_tqdm`: False
|
444 |
+
- `remove_unused_columns`: True
|
445 |
+
- `label_names`: None
|
446 |
+
- `load_best_model_at_end`: False
|
447 |
+
- `ignore_data_skip`: False
|
448 |
+
- `fsdp`: []
|
449 |
+
- `fsdp_min_num_params`: 0
|
450 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
451 |
+
- `tp_size`: 0
|
452 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
453 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
454 |
+
- `deepspeed`: None
|
455 |
+
- `label_smoothing_factor`: 0.0
|
456 |
+
- `optim`: adamw_torch
|
457 |
+
- `optim_args`: None
|
458 |
+
- `adafactor`: False
|
459 |
+
- `group_by_length`: False
|
460 |
+
- `length_column_name`: length
|
461 |
+
- `ddp_find_unused_parameters`: None
|
462 |
+
- `ddp_bucket_cap_mb`: None
|
463 |
+
- `ddp_broadcast_buffers`: False
|
464 |
+
- `dataloader_pin_memory`: True
|
465 |
+
- `dataloader_persistent_workers`: False
|
466 |
+
- `skip_memory_metrics`: True
|
467 |
+
- `use_legacy_prediction_loop`: False
|
468 |
+
- `push_to_hub`: False
|
469 |
+
- `resume_from_checkpoint`: None
|
470 |
+
- `hub_model_id`: None
|
471 |
+
- `hub_strategy`: every_save
|
472 |
+
- `hub_private_repo`: None
|
473 |
+
- `hub_always_push`: False
|
474 |
+
- `gradient_checkpointing`: False
|
475 |
+
- `gradient_checkpointing_kwargs`: None
|
476 |
+
- `include_inputs_for_metrics`: False
|
477 |
+
- `include_for_metrics`: []
|
478 |
+
- `eval_do_concat_batches`: True
|
479 |
+
- `fp16_backend`: auto
|
480 |
+
- `push_to_hub_model_id`: None
|
481 |
+
- `push_to_hub_organization`: None
|
482 |
+
- `mp_parameters`:
|
483 |
+
- `auto_find_batch_size`: False
|
484 |
+
- `full_determinism`: False
|
485 |
+
- `torchdynamo`: None
|
486 |
+
- `ray_scope`: last
|
487 |
+
- `ddp_timeout`: 1800
|
488 |
+
- `torch_compile`: False
|
489 |
+
- `torch_compile_backend`: None
|
490 |
+
- `torch_compile_mode`: None
|
491 |
+
- `include_tokens_per_second`: False
|
492 |
+
- `include_num_input_tokens_seen`: False
|
493 |
+
- `neftune_noise_alpha`: None
|
494 |
+
- `optim_target_modules`: None
|
495 |
+
- `batch_eval_metrics`: False
|
496 |
+
- `eval_on_start`: False
|
497 |
+
- `use_liger_kernel`: False
|
498 |
+
- `eval_use_gather_object`: False
|
499 |
+
- `average_tokens_across_devices`: False
|
500 |
+
- `prompts`: None
|
501 |
+
- `batch_sampler`: batch_sampler
|
502 |
+
- `multi_dataset_batch_sampler`: round_robin
|
503 |
+
|
504 |
+
</details>
|
505 |
+
|
506 |
+
### Training Logs
|
507 |
+
| Epoch | Step | Training Loss |
|
508 |
+
|:------:|:-----:|:-------------:|
|
509 |
+
| 0.0727 | 500 | 0.7681 |
|
510 |
+
| 0.1453 | 1000 | 0.1157 |
|
511 |
+
| 0.2180 | 1500 | 0.1068 |
|
512 |
+
| 0.2907 | 2000 | 0.0979 |
|
513 |
+
| 0.3633 | 2500 | 0.0969 |
|
514 |
+
| 0.4360 | 3000 | 0.0945 |
|
515 |
+
| 0.5086 | 3500 | 0.0918 |
|
516 |
+
| 0.5813 | 4000 | 0.0905 |
|
517 |
+
| 0.6540 | 4500 | 0.088 |
|
518 |
+
| 0.7266 | 5000 | 0.0854 |
|
519 |
+
| 0.7993 | 5500 | 0.0855 |
|
520 |
+
| 0.8720 | 6000 | 0.0873 |
|
521 |
+
| 0.9446 | 6500 | 0.082 |
|
522 |
+
| 1.0173 | 7000 | 0.0728 |
|
523 |
+
| 1.0900 | 7500 | 0.0427 |
|
524 |
+
| 1.1626 | 8000 | 0.0435 |
|
525 |
+
| 1.2353 | 8500 | 0.0441 |
|
526 |
+
| 1.3079 | 9000 | 0.045 |
|
527 |
+
| 1.3806 | 9500 | 0.0444 |
|
528 |
+
| 1.4533 | 10000 | 0.0433 |
|
529 |
+
| 1.5259 | 10500 | 0.0447 |
|
530 |
+
| 1.5986 | 11000 | 0.0443 |
|
531 |
+
| 1.6713 | 11500 | 0.0439 |
|
532 |
+
| 1.7439 | 12000 | 0.0449 |
|
533 |
+
| 1.8166 | 12500 | 0.0441 |
|
534 |
+
| 1.8893 | 13000 | 0.0443 |
|
535 |
+
| 1.9619 | 13500 | 0.0461 |
|
536 |
+
| 2.0346 | 14000 | 0.0335 |
|
537 |
+
| 2.1073 | 14500 | 0.0192 |
|
538 |
+
| 2.1799 | 15000 | 0.0199 |
|
539 |
+
| 2.2526 | 15500 | 0.0197 |
|
540 |
+
| 2.3252 | 16000 | 0.0199 |
|
541 |
+
| 2.3979 | 16500 | 0.02 |
|
542 |
+
| 2.4706 | 17000 | 0.0206 |
|
543 |
+
| 2.5432 | 17500 | 0.0204 |
|
544 |
+
| 2.6159 | 18000 | 0.0202 |
|
545 |
+
| 2.6886 | 18500 | 0.0206 |
|
546 |
+
| 2.7612 | 19000 | 0.0209 |
|
547 |
+
| 2.8339 | 19500 | 0.0211 |
|
548 |
+
| 2.9066 | 20000 | 0.0207 |
|
549 |
+
| 2.9792 | 20500 | 0.0202 |
|
550 |
+
| 3.0519 | 21000 | 0.014 |
|
551 |
+
| 3.1245 | 21500 | 0.0112 |
|
552 |
+
| 3.1972 | 22000 | 0.0111 |
|
553 |
+
| 3.2699 | 22500 | 0.0113 |
|
554 |
+
| 3.3425 | 23000 | 0.0117 |
|
555 |
+
| 3.4152 | 23500 | 0.0116 |
|
556 |
+
| 3.4879 | 24000 | 0.0118 |
|
557 |
+
| 3.5605 | 24500 | 0.0114 |
|
558 |
+
| 3.6332 | 25000 | 0.0114 |
|
559 |
+
| 3.7059 | 25500 | 0.011 |
|
560 |
+
| 3.7785 | 26000 | 0.0109 |
|
561 |
+
| 3.8512 | 26500 | 0.0113 |
|
562 |
+
| 3.9238 | 27000 | 0.0113 |
|
563 |
+
| 3.9965 | 27500 | 0.0111 |
|
564 |
+
| 4.0692 | 28000 | 0.0085 |
|
565 |
+
| 4.1418 | 28500 | 0.0081 |
|
566 |
+
| 4.2145 | 29000 | 0.0082 |
|
567 |
+
| 4.2872 | 29500 | 0.0083 |
|
568 |
+
| 4.3598 | 30000 | 0.0085 |
|
569 |
+
| 4.4325 | 30500 | 0.0086 |
|
570 |
+
| 4.5052 | 31000 | 0.0082 |
|
571 |
+
| 4.5778 | 31500 | 0.0083 |
|
572 |
+
| 4.6505 | 32000 | 0.0084 |
|
573 |
+
| 4.7232 | 32500 | 0.0085 |
|
574 |
+
| 4.7958 | 33000 | 0.0083 |
|
575 |
+
| 4.8685 | 33500 | 0.0082 |
|
576 |
+
| 4.9411 | 34000 | 0.0081 |
|
577 |
+
|
578 |
+
|
579 |
+
### Framework Versions
|
580 |
+
- Python: 3.11.12
|
581 |
+
- Sentence Transformers: 3.4.1
|
582 |
+
- Transformers: 4.51.3
|
583 |
+
- PyTorch: 2.6.0+cu124
|
584 |
+
- Accelerate: 1.5.2
|
585 |
+
- Datasets: 3.5.0
|
586 |
+
- Tokenizers: 0.21.1
|
587 |
+
|
588 |
+
## Citation
|
589 |
+
|
590 |
+
### BibTeX
|
591 |
+
|
592 |
+
#### Sentence Transformers
|
593 |
+
```bibtex
|
594 |
+
@inproceedings{reimers-2019-sentence-bert,
|
595 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
596 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
597 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
598 |
+
month = "11",
|
599 |
+
year = "2019",
|
600 |
+
publisher = "Association for Computational Linguistics",
|
601 |
+
url = "https://arxiv.org/abs/1908.10084",
|
602 |
+
}
|
603 |
+
```
|
604 |
+
|
605 |
+
#### MultipleNegativesRankingLoss
|
606 |
+
```bibtex
|
607 |
+
@misc{henderson2017efficient,
|
608 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
609 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
610 |
+
year={2017},
|
611 |
+
eprint={1705.00652},
|
612 |
+
archivePrefix={arXiv},
|
613 |
+
primaryClass={cs.CL}
|
614 |
+
}
|
615 |
+
```
|
616 |
+
|
617 |
+
<!--
|
618 |
+
## Glossary
|
619 |
+
|
620 |
+
*Clearly define terms in order to be accessible across audiences.*
|
621 |
+
-->
|
622 |
+
|
623 |
+
<!--
|
624 |
+
## Model Card Authors
|
625 |
+
|
626 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
627 |
+
-->
|
628 |
+
|
629 |
+
<!--
|
630 |
+
## Model Card Contact
|
631 |
+
|
632 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
633 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 50001,
|
3 |
+
"<mask>": 50003,
|
4 |
+
"<s>": 50000,
|
5 |
+
"<unk>": 50002
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertModel"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"bos_token_id": 50000,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "cls",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50001,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"hidden_activation": "gelu",
|
21 |
+
"hidden_dropout_prob": 0.1,
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 3072,
|
26 |
+
"local_attention": 128,
|
27 |
+
"local_attention_rope_theta": 10000,
|
28 |
+
"local_attention_window": 128,
|
29 |
+
"local_rope_theta": 10000.0,
|
30 |
+
"max_position_embeddings": 8192,
|
31 |
+
"mlp_bias": false,
|
32 |
+
"mlp_dropout": 0.0,
|
33 |
+
"model_type": "modernbert",
|
34 |
+
"norm_bias": false,
|
35 |
+
"norm_eps": 1e-05,
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 12,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"repad_logits_with_grad": false,
|
40 |
+
"rope_theta": 160000,
|
41 |
+
"sep_token_id": 50282,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.51.3",
|
46 |
+
"type_vocab_size": 2,
|
47 |
+
"vocab_size": 50004
|
48 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:801a2a2608009baa7e661ca6a6206734f39954cf8a4af85409ffc70705094c68
|
3 |
+
size 606681112
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 1024,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[UNK]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[CLS]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[SEP]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"50000": {
|
45 |
+
"content": "<s>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"50001": {
|
53 |
+
"content": "</s>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"50002": {
|
61 |
+
"content": "<unk>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"50003": {
|
69 |
+
"content": "<mask>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"bos_token": "<s>",
|
78 |
+
"clean_up_tokenization_spaces": false,
|
79 |
+
"cls_token": "<s>",
|
80 |
+
"eos_token": "</s>",
|
81 |
+
"errors": "replace",
|
82 |
+
"extra_special_tokens": {},
|
83 |
+
"mask_token": "<mask>",
|
84 |
+
"max_length": null,
|
85 |
+
"model_max_length": 1000000000000000019884624838656,
|
86 |
+
"pad_to_multiple_of": null,
|
87 |
+
"pad_token": "[PAD]",
|
88 |
+
"pad_token_type_id": 0,
|
89 |
+
"padding_side": "right",
|
90 |
+
"sep_token": "</s>",
|
91 |
+
"stride": 0,
|
92 |
+
"tokenizer_class": "RobertaTokenizer",
|
93 |
+
"trim_offsets": true,
|
94 |
+
"truncation_side": "right",
|
95 |
+
"truncation_strategy": "longest_first",
|
96 |
+
"unk_token": "<unk>"
|
97 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|