Upload ModernBERT model
Browse files- 1_Pooling/config.json +10 -0
- README.md +864 -0
- added_tokens.json +6 -0
- config.json +49 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +97 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,864 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:1431743
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: Shuu12121/CodeModernBERT-Owl
|
10 |
+
widget:
|
11 |
+
- source_sentence: return predicted ADEV of noise-type at given tau
|
12 |
+
sentences:
|
13 |
+
- "def get_instances(self):\n \n services = []\n for resource\
|
14 |
+
\ in self._get_instances():\n services.append(resource['entity']['name'])\n\
|
15 |
+
\n return services"
|
16 |
+
- "def handle_exception(self, *args):\n \n\n if not self.__enabled:\n\
|
17 |
+
\ return\n\n cls, instance, trcback = foundations.exceptions.extract_exception(*args)\n\
|
18 |
+
\n LOGGER.info(\"{0} | Handling '{1}' exception!\".format(\n \
|
19 |
+
\ self.__class__.__name__, foundations.strings.to_string(cls)))\n\n self.__initialize_context_ui()\n\
|
20 |
+
\n self.__update_html(self.format_html_exception(cls, instance, trcback))\n\
|
21 |
+
\n self.show()\n self.__report and self.report_exception_to_crittercism(cls,\
|
22 |
+
\ instance, trcback)\n foundations.exceptions.base_exception_handler(cls,\
|
23 |
+
\ instance, trcback)\n self.exec_()"
|
24 |
+
- "def adev(self, tau0, tau):\n \n prefactor = self.adev_from_qd(tau0=tau0,\
|
25 |
+
\ tau=tau)\n c = self.c_avar()\n avar = pow(prefactor, 2)*pow(tau,\
|
26 |
+
\ c)\n return np.sqrt(avar)"
|
27 |
+
- source_sentence: "Edit a IP4\n\n :param ip4: An IP4 available to save in\
|
28 |
+
\ format x.x.x.x.\n :param id_ip: IP identifier. Integer value and greater\
|
29 |
+
\ than zero.\n :param descricao: IP description.\n\n :return: None"
|
30 |
+
sentences:
|
31 |
+
- "def _vec_alpha(self, donor_catchments):\n \n return np.dot(linalg.inv(self._matrix_omega(donor_catchments)),\
|
32 |
+
\ self._vec_b(donor_catchments))"
|
33 |
+
- "def sync_balancer_files(self):\n \n\n def sync():\n \
|
34 |
+
\ for balancer in self.configurables[Balancer].values():\n balancer.sync_file(self.configurables[Cluster].values())\n\
|
35 |
+
\n self.work_pool.submit(sync)"
|
36 |
+
- "def edit_ipv4(self, ip4, descricao, id_ip):\n \n\n if not is_valid_int_param(id_ip):\n\
|
37 |
+
\ raise InvalidParameterError(\n u'Ip identifier is\
|
38 |
+
\ invalid or was not informed.')\n\n if ip4 is None or ip4 == \"\":\n \
|
39 |
+
\ raise InvalidParameterError(\n u'The IP4 is invalid\
|
40 |
+
\ or was not informed.')\n\n ip_map = dict()\n ip_map['descricao']\
|
41 |
+
\ = descricao\n ip_map['ip4'] = ip4\n ip_map['id_ip'] = id_ip\n\n\
|
42 |
+
\ url = \"ip4/edit/\"\n\n code, xml = self.submit({'ip_map': ip_map},\
|
43 |
+
\ 'POST', url)\n\n return self.response(code, xml)"
|
44 |
+
- source_sentence: "Check if health check is disabled.\n\n It logs a message\
|
45 |
+
\ if health check is disabled and it also adds an item\n to the action\
|
46 |
+
\ queue based on 'on_disabled' setting.\n\n Returns:\n True\
|
47 |
+
\ if check is disabled otherwise False."
|
48 |
+
sentences:
|
49 |
+
- "def find_guest(name, quiet=False, path=None):\n '''\n Returns the host\
|
50 |
+
\ for a container.\n\n path\n path to the container parent\n \
|
51 |
+
\ default: /var/lib/lxc (system default)\n\n .. versionadded:: 2015.8.0\n\
|
52 |
+
\n\n .. code-block:: bash\n\n salt-run lxc.find_guest name\n '''\n\
|
53 |
+
\ if quiet:\n log.warning(\"'quiet' argument is being deprecated.\"\n\
|
54 |
+
\ ' Please migrate to --quiet')\n for data in _list_iter(path=path):\n\
|
55 |
+
\ host, l = next(six.iteritems(data))\n for x in 'running', 'frozen',\
|
56 |
+
\ 'stopped':\n if name in l[x]:\n if not quiet:\n \
|
57 |
+
\ __jid_event__.fire_event(\n {'data':\
|
58 |
+
\ host,\n 'outputter': 'lxc_find_host'},\n \
|
59 |
+
\ 'progress')\n return host\n return None"
|
60 |
+
- "def iter_wave_values(self):\n \n typecode = self.get_typecode(self.samplewidth)\n\
|
61 |
+
\n if log.level >= 5:\n if self.cfg.AVG_COUNT > 1:\n \
|
62 |
+
\ # merge samples -> log output in iter_avg_wave_values\n \
|
63 |
+
\ tlm = None\n else:\n tlm = TextLevelMeter(self.max_value,\
|
64 |
+
\ 79)\n\n # Use only a read size which is a quare divider of the samplewidth\n\
|
65 |
+
\ # Otherwise array.array will raise: ValueError: string length not a multiple\
|
66 |
+
\ of item size\n divider = int(round(float(WAVE_READ_SIZE) / self.samplewidth))\n\
|
67 |
+
\ read_size = self.samplewidth * divider\n if read_size != WAVE_READ_SIZE:\n\
|
68 |
+
\ log.info(\"Real use wave read size: %i Bytes\" % read_size)\n\n \
|
69 |
+
\ get_wave_block_func = functools.partial(self.wavefile.readframes, read_size)\n\
|
70 |
+
\ skip_count = 0\n\n manually_audioop_bias = self.samplewidth ==\
|
71 |
+
\ 1 and audioop is None\n\n for frames in iter(get_wave_block_func, \"\"\
|
72 |
+
):\n\n if self.samplewidth == 1:\n if audioop is None:\n\
|
73 |
+
\ log.warning(\"use audioop.bias() work-a-round for missing\
|
74 |
+
\ audioop.\")\n else:\n # 8 bit samples are\
|
75 |
+
\ unsigned, see:\n # http://docs.python.org/2/library/audioop.html#audioop.lin2lin\n\
|
76 |
+
\ frames = audioop.bias(frames, 1, 128)\n\n try:\n\
|
77 |
+
\ values = array.array(typecode, frames)\n except ValueError,\
|
78 |
+
\ err:\n # e.g.:\n # ValueError: string length\
|
79 |
+
\ not a multiple of item size\n # Work-a-round: Skip the last frames\
|
80 |
+
\ of this block\n frame_count = len(frames)\n divider\
|
81 |
+
\ = int(math.floor(float(frame_count) / self.samplewidth))\n new_count\
|
82 |
+
\ = self.samplewidth * divider\n frames = frames[:new_count] #\
|
83 |
+
\ skip frames\n log.error(\n \"Can't make array\
|
84 |
+
\ from %s frames: Value error: %s (Skip %i and use %i frames)\" % (\n \
|
85 |
+
\ frame_count, err, frame_count - new_count, len(frames)\n \
|
86 |
+
\ ))\n values = array.array(typecode, frames)\n\n \
|
87 |
+
\ for value in values:\n self.wave_pos += 1 # Absolute\
|
88 |
+
\ position in the frame stream\n\n if manually_audioop_bias:\n\
|
89 |
+
\ # audioop.bias can't be used.\n # See:\
|
90 |
+
\ http://hg.python.org/cpython/file/482590320549/Modules/audioop.c#l957\n \
|
91 |
+
\ value = value % 0xff - 128\n\n# if abs(value)\
|
92 |
+
\ < self.min_volume:\n# # log.log(5, \"Ignore to lower amplitude\"\
|
93 |
+
)\n# skip_count += 1\n# continue\n\n \
|
94 |
+
\ yield (self.wave_pos, value)\n\n log.info(\"Skip %i samples\
|
95 |
+
\ that are lower than %i\" % (\n skip_count, self.min_volume\n \
|
96 |
+
\ ))\n log.info(\"Last readed Frame is: %s\" % self.pformat_pos())"
|
97 |
+
- "def _check_disabled(self):\n \n if self.config['check_disabled']:\n\
|
98 |
+
\ if self.config['on_disabled'] == 'withdraw':\n self.log.info(\"\
|
99 |
+
Check is disabled and ip_prefix will be \"\n \"withdrawn\"\
|
100 |
+
)\n self.log.info(\"adding %s in the queue\", self.ip_with_prefixlen)\n\
|
101 |
+
\ self.action.put(self.del_operation)\n self.log.info(\"\
|
102 |
+
Check is now permanently disabled\")\n elif self.config['on_disabled']\
|
103 |
+
\ == 'advertise':\n self.log.info(\"check is disabled, ip_prefix\
|
104 |
+
\ wont be withdrawn\")\n self.log.info(\"adding %s in the queue\"\
|
105 |
+
, self.ip_with_prefixlen)\n self.action.put(self.add_operation)\n\
|
106 |
+
\ self.log.info('check is now permanently disabled')\n\n \
|
107 |
+
\ return True\n\n return False"
|
108 |
+
- source_sentence: "When serializing an agent distribution, remove the thresholds,\
|
109 |
+
\ in order\n to avoid cluttering the YAML definition file."
|
110 |
+
sentences:
|
111 |
+
- "def serialize_distribution(network_agents, known_modules=[]):\n '''\n When\
|
112 |
+
\ serializing an agent distribution, remove the thresholds, in order\n to avoid\
|
113 |
+
\ cluttering the YAML definition file.\n '''\n d = deepcopy(list(network_agents))\n\
|
114 |
+
\ for v in d:\n if 'threshold' in v:\n del v['threshold']\n\
|
115 |
+
\ v['agent_type'] = serialize_type(v['agent_type'],\n \
|
116 |
+
\ known_modules=known_modules)\n return d"
|
117 |
+
- "def disconnect(self):\n \n if self.root.ref is not None:\n \
|
118 |
+
\ self.api.disconnect()\n self.root = None"
|
119 |
+
- "def make_tarball(src_dir):\n \n if type(src_dir) != str:\n raise\
|
120 |
+
\ TypeError('src_dir must be str')\n output_file = src_dir + \".tar.gz\"\n\
|
121 |
+
\ log.msg(\"Wrapping tarball '{out}' ...\".format(out=output_file))\n if\
|
122 |
+
\ not _dry_run:\n with tarfile.open(output_file, \"w:gz\") as tar:\n \
|
123 |
+
\ tar.add(src_dir, arcname=os.path.basename(src_dir))\n return output_file"
|
124 |
+
- source_sentence: Encrypts the zip file
|
125 |
+
sentences:
|
126 |
+
- "def nsUriMatch(self, value, wanted, strict=0, tt=type(())):\n \n \
|
127 |
+
\ if value == wanted or (type(wanted) is tt) and value in wanted:\n \
|
128 |
+
\ return 1\n if not strict and value is not None:\n wanted\
|
129 |
+
\ = type(wanted) is tt and wanted or (wanted,)\n value = value[-1:]\
|
130 |
+
\ != '/' and value or value[:-1]\n for item in wanted:\n \
|
131 |
+
\ if item == value or item[:-1] == value:\n return 1\n\
|
132 |
+
\ return 0"
|
133 |
+
- "def transform(self, sents):\n \n\n def convert(tokens):\n \
|
134 |
+
\ return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)\n\
|
135 |
+
\n if self.vocab is None:\n raise Exception(\n \
|
136 |
+
\ \"Must run .fit() for .fit_transform() before \" \"calling .transform().\"\
|
137 |
+
\n )\n\n seqs = sorted([convert(s) for s in sents], key=lambda\
|
138 |
+
\ x: -len(x))\n X = torch.LongTensor(pad_sequence(seqs, batch_first=True))\n\
|
139 |
+
\ return X"
|
140 |
+
- "def freeze_encrypt(dest_dir, zip_filename, config, opt):\n \n pgp_keys\
|
141 |
+
\ = grok_keys(config)\n icefile_prefix = \"aomi-%s\" % \\\n \
|
142 |
+
\ os.path.basename(os.path.dirname(opt.secretfile))\n if opt.icefile_prefix:\n\
|
143 |
+
\ icefile_prefix = opt.icefile_prefix\n\n timestamp = time.strftime(\"\
|
144 |
+
%H%M%S-%m-%d-%Y\",\n datetime.datetime.now().timetuple())\n\
|
145 |
+
\ ice_file = \"%s/%s-%s.ice\" % (dest_dir, icefile_prefix, timestamp)\n \
|
146 |
+
\ if not encrypt(zip_filename, ice_file, pgp_keys):\n raise aomi.exceptions.GPG(\"\
|
147 |
+
Unable to encrypt zipfile\")\n\n return ice_file"
|
148 |
+
pipeline_tag: sentence-similarity
|
149 |
+
library_name: sentence-transformers
|
150 |
+
metrics:
|
151 |
+
- pearson_cosine
|
152 |
+
- spearman_cosine
|
153 |
+
model-index:
|
154 |
+
- name: SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
155 |
+
results:
|
156 |
+
- task:
|
157 |
+
type: semantic-similarity
|
158 |
+
name: Semantic Similarity
|
159 |
+
dataset:
|
160 |
+
name: code docstring dev
|
161 |
+
type: code-docstring-dev
|
162 |
+
metrics:
|
163 |
+
- type: pearson_cosine
|
164 |
+
value: .nan
|
165 |
+
name: Pearson Cosine
|
166 |
+
- type: spearman_cosine
|
167 |
+
value: .nan
|
168 |
+
name: Spearman Cosine
|
169 |
+
---
|
170 |
+
|
171 |
+
# SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
172 |
+
|
173 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
174 |
+
|
175 |
+
## Model Details
|
176 |
+
|
177 |
+
### Model Description
|
178 |
+
- **Model Type:** Sentence Transformer
|
179 |
+
- **Base model:** [Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl) <!-- at revision d403250d7979eb141409c611c0a39fd7110543a4 -->
|
180 |
+
- **Maximum Sequence Length:** 2048 tokens
|
181 |
+
- **Output Dimensionality:** 768 dimensions
|
182 |
+
- **Similarity Function:** Cosine Similarity
|
183 |
+
<!-- - **Training Dataset:** Unknown -->
|
184 |
+
<!-- - **Language:** Unknown -->
|
185 |
+
<!-- - **License:** Unknown -->
|
186 |
+
|
187 |
+
### Model Sources
|
188 |
+
|
189 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
190 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
191 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
192 |
+
|
193 |
+
### Full Model Architecture
|
194 |
+
|
195 |
+
```
|
196 |
+
SentenceTransformer(
|
197 |
+
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
198 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
199 |
+
)
|
200 |
+
```
|
201 |
+
|
202 |
+
## Usage
|
203 |
+
|
204 |
+
### Direct Usage (Sentence Transformers)
|
205 |
+
|
206 |
+
First install the Sentence Transformers library:
|
207 |
+
|
208 |
+
```bash
|
209 |
+
pip install -U sentence-transformers
|
210 |
+
```
|
211 |
+
|
212 |
+
Then you can load this model and run inference.
|
213 |
+
```python
|
214 |
+
from sentence_transformers import SentenceTransformer
|
215 |
+
|
216 |
+
# Download from the 🤗 Hub
|
217 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
218 |
+
# Run inference
|
219 |
+
sentences = [
|
220 |
+
'Encrypts the zip file',
|
221 |
+
'def freeze_encrypt(dest_dir, zip_filename, config, opt):\n \n pgp_keys = grok_keys(config)\n icefile_prefix = "aomi-%s" % \\\n os.path.basename(os.path.dirname(opt.secretfile))\n if opt.icefile_prefix:\n icefile_prefix = opt.icefile_prefix\n\n timestamp = time.strftime("%H%M%S-%m-%d-%Y",\n datetime.datetime.now().timetuple())\n ice_file = "%s/%s-%s.ice" % (dest_dir, icefile_prefix, timestamp)\n if not encrypt(zip_filename, ice_file, pgp_keys):\n raise aomi.exceptions.GPG("Unable to encrypt zipfile")\n\n return ice_file',
|
222 |
+
'def transform(self, sents):\n \n\n def convert(tokens):\n return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)\n\n if self.vocab is None:\n raise Exception(\n "Must run .fit() for .fit_transform() before " "calling .transform()."\n )\n\n seqs = sorted([convert(s) for s in sents], key=lambda x: -len(x))\n X = torch.LongTensor(pad_sequence(seqs, batch_first=True))\n return X',
|
223 |
+
]
|
224 |
+
embeddings = model.encode(sentences)
|
225 |
+
print(embeddings.shape)
|
226 |
+
# [3, 768]
|
227 |
+
|
228 |
+
# Get the similarity scores for the embeddings
|
229 |
+
similarities = model.similarity(embeddings, embeddings)
|
230 |
+
print(similarities.shape)
|
231 |
+
# [3, 3]
|
232 |
+
```
|
233 |
+
|
234 |
+
<!--
|
235 |
+
### Direct Usage (Transformers)
|
236 |
+
|
237 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
238 |
+
|
239 |
+
</details>
|
240 |
+
-->
|
241 |
+
|
242 |
+
<!--
|
243 |
+
### Downstream Usage (Sentence Transformers)
|
244 |
+
|
245 |
+
You can finetune this model on your own dataset.
|
246 |
+
|
247 |
+
<details><summary>Click to expand</summary>
|
248 |
+
|
249 |
+
</details>
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
### Out-of-Scope Use
|
254 |
+
|
255 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
## Evaluation
|
259 |
+
|
260 |
+
### Metrics
|
261 |
+
|
262 |
+
#### Semantic Similarity
|
263 |
+
|
264 |
+
* Dataset: `code-docstring-dev`
|
265 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
266 |
+
|
267 |
+
| Metric | Value |
|
268 |
+
|:--------------------|:--------|
|
269 |
+
| pearson_cosine | nan |
|
270 |
+
| **spearman_cosine** | **nan** |
|
271 |
+
|
272 |
+
<!--
|
273 |
+
## Bias, Risks and Limitations
|
274 |
+
|
275 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
276 |
+
-->
|
277 |
+
|
278 |
+
<!--
|
279 |
+
### Recommendations
|
280 |
+
|
281 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
282 |
+
-->
|
283 |
+
|
284 |
+
## Training Details
|
285 |
+
|
286 |
+
### Training Dataset
|
287 |
+
|
288 |
+
#### Unnamed Dataset
|
289 |
+
|
290 |
+
* Size: 1,431,743 training samples
|
291 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
292 |
+
* Approximate statistics based on the first 1000 samples:
|
293 |
+
| | sentence_0 | sentence_1 | label |
|
294 |
+
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
295 |
+
| type | string | string | float |
|
296 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 63.94 tokens</li><li>max: 1310 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 173.04 tokens</li><li>max: 1801 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
297 |
+
* Samples:
|
298 |
+
| sentence_0 | sentence_1 | label |
|
299 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
300 |
+
| <code>Serves a cross-domain policy which can allow other policies<br> to exist on the same domain.<br><br> Note that this view, if used, must be the master policy for the<br> domain, and so must be served from the URL ``/crossdomain.xml`` on<br> the domain: setting metapolicy information in other policy files<br> is forbidden by the cross-domain policy specification.<br><br> **Required arguments:**<br><br> ``permitted``<br> A string indicating the extent to which other policies are<br> permitted. A set of constants is available in<br> ``flashpolicies.policies``, defining acceptable values for<br> this argument.<br><br> **Optional arguments:**<br><br> ``domains``<br> A list of domains from which to allow access. Each value may<br> be either a domain name (e.g., ``example.com``) or a wildcard<br> (e.g., ``*.example.com``). Due to serious potential security<br> issues, it is strongly recommended that you not use wildcard<br> domain values.</code> | <code>def metapolicy(request, permitted, domains=None):<br> <br> if domains is None:<br> domains = []<br> policy = policies.Policy(*domains)<br> policy.metapolicy(permitted)<br> return serve(request, policy)</code> | <code>1.0</code> |
|
301 |
+
| <code>Puts a value from a VEX temporary register into a machine register.<br> This is how the results of operations done to registers get committed to the machine's state.<br><br> :param val: The VexValue to store (Want to store a constant? See Constant() first)<br> :param reg: The integer register number to store into, or register name<br> :return: None</code> | <code>def put(self, val, reg):<br> <br> offset = self.lookup_register(self.irsb_c.irsb.arch, reg)<br> self.irsb_c.put(val.rdt, offset)</code> | <code>1.0</code> |
|
302 |
+
| <code>Like `get_token`, but using an OAuth 2 authorization code.<br><br> Use this method if you run a webserver that serves as an endpoint for<br> the redirect URI. The webserver can retrieve the authorization code<br> from the URL that is requested by ORCID.<br><br> Parameters<br> ----------<br> :param redirect_uri: string<br> The redirect uri of the institution.<br> :param authorization_code: string<br> The authorization code.<br><br> Returns<br> -------<br> :returns: dict<br> All data of the access token. The access token itself is in the<br> ``"access_token"`` key.</code> | <code>def get_token_from_authorization_code(self,<br> authorization_code, redirect_uri):<br> <br> token_dict = {<br> "client_id": self._key,<br> "client_secret": self._secret,<br> "grant_type": "authorization_code",<br> "code": authorization_code,<br> "redirect_uri": redirect_uri,<br> }<br> response = requests.post(self._token_url, data=token_dict,<br> headers={'Accept': 'application/json'},<br> timeout=self._timeout)<br> response.raise_for_status()<br> if self.do_store_raw_response:<br> self.raw_response = response<br> return json.loads(response.text)</code> | <code>1.0</code> |
|
303 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
304 |
+
```json
|
305 |
+
{
|
306 |
+
"scale": 20.0,
|
307 |
+
"similarity_fct": "cos_sim"
|
308 |
+
}
|
309 |
+
```
|
310 |
+
|
311 |
+
### Training Hyperparameters
|
312 |
+
#### Non-Default Hyperparameters
|
313 |
+
|
314 |
+
- `eval_strategy`: steps
|
315 |
+
- `per_device_train_batch_size`: 24
|
316 |
+
- `per_device_eval_batch_size`: 24
|
317 |
+
- `fp16`: True
|
318 |
+
- `multi_dataset_batch_sampler`: round_robin
|
319 |
+
|
320 |
+
#### All Hyperparameters
|
321 |
+
<details><summary>Click to expand</summary>
|
322 |
+
|
323 |
+
- `overwrite_output_dir`: False
|
324 |
+
- `do_predict`: False
|
325 |
+
- `eval_strategy`: steps
|
326 |
+
- `prediction_loss_only`: True
|
327 |
+
- `per_device_train_batch_size`: 24
|
328 |
+
- `per_device_eval_batch_size`: 24
|
329 |
+
- `per_gpu_train_batch_size`: None
|
330 |
+
- `per_gpu_eval_batch_size`: None
|
331 |
+
- `gradient_accumulation_steps`: 1
|
332 |
+
- `eval_accumulation_steps`: None
|
333 |
+
- `torch_empty_cache_steps`: None
|
334 |
+
- `learning_rate`: 5e-05
|
335 |
+
- `weight_decay`: 0.0
|
336 |
+
- `adam_beta1`: 0.9
|
337 |
+
- `adam_beta2`: 0.999
|
338 |
+
- `adam_epsilon`: 1e-08
|
339 |
+
- `max_grad_norm`: 1
|
340 |
+
- `num_train_epochs`: 3
|
341 |
+
- `max_steps`: -1
|
342 |
+
- `lr_scheduler_type`: linear
|
343 |
+
- `lr_scheduler_kwargs`: {}
|
344 |
+
- `warmup_ratio`: 0.0
|
345 |
+
- `warmup_steps`: 0
|
346 |
+
- `log_level`: passive
|
347 |
+
- `log_level_replica`: warning
|
348 |
+
- `log_on_each_node`: True
|
349 |
+
- `logging_nan_inf_filter`: True
|
350 |
+
- `save_safetensors`: True
|
351 |
+
- `save_on_each_node`: False
|
352 |
+
- `save_only_model`: False
|
353 |
+
- `restore_callback_states_from_checkpoint`: False
|
354 |
+
- `no_cuda`: False
|
355 |
+
- `use_cpu`: False
|
356 |
+
- `use_mps_device`: False
|
357 |
+
- `seed`: 42
|
358 |
+
- `data_seed`: None
|
359 |
+
- `jit_mode_eval`: False
|
360 |
+
- `use_ipex`: False
|
361 |
+
- `bf16`: False
|
362 |
+
- `fp16`: True
|
363 |
+
- `fp16_opt_level`: O1
|
364 |
+
- `half_precision_backend`: auto
|
365 |
+
- `bf16_full_eval`: False
|
366 |
+
- `fp16_full_eval`: False
|
367 |
+
- `tf32`: None
|
368 |
+
- `local_rank`: 0
|
369 |
+
- `ddp_backend`: None
|
370 |
+
- `tpu_num_cores`: None
|
371 |
+
- `tpu_metrics_debug`: False
|
372 |
+
- `debug`: []
|
373 |
+
- `dataloader_drop_last`: False
|
374 |
+
- `dataloader_num_workers`: 0
|
375 |
+
- `dataloader_prefetch_factor`: None
|
376 |
+
- `past_index`: -1
|
377 |
+
- `disable_tqdm`: False
|
378 |
+
- `remove_unused_columns`: True
|
379 |
+
- `label_names`: None
|
380 |
+
- `load_best_model_at_end`: False
|
381 |
+
- `ignore_data_skip`: False
|
382 |
+
- `fsdp`: []
|
383 |
+
- `fsdp_min_num_params`: 0
|
384 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
385 |
+
- `tp_size`: 0
|
386 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
387 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
388 |
+
- `deepspeed`: None
|
389 |
+
- `label_smoothing_factor`: 0.0
|
390 |
+
- `optim`: adamw_torch
|
391 |
+
- `optim_args`: None
|
392 |
+
- `adafactor`: False
|
393 |
+
- `group_by_length`: False
|
394 |
+
- `length_column_name`: length
|
395 |
+
- `ddp_find_unused_parameters`: None
|
396 |
+
- `ddp_bucket_cap_mb`: None
|
397 |
+
- `ddp_broadcast_buffers`: False
|
398 |
+
- `dataloader_pin_memory`: True
|
399 |
+
- `dataloader_persistent_workers`: False
|
400 |
+
- `skip_memory_metrics`: True
|
401 |
+
- `use_legacy_prediction_loop`: False
|
402 |
+
- `push_to_hub`: False
|
403 |
+
- `resume_from_checkpoint`: None
|
404 |
+
- `hub_model_id`: None
|
405 |
+
- `hub_strategy`: every_save
|
406 |
+
- `hub_private_repo`: None
|
407 |
+
- `hub_always_push`: False
|
408 |
+
- `gradient_checkpointing`: False
|
409 |
+
- `gradient_checkpointing_kwargs`: None
|
410 |
+
- `include_inputs_for_metrics`: False
|
411 |
+
- `include_for_metrics`: []
|
412 |
+
- `eval_do_concat_batches`: True
|
413 |
+
- `fp16_backend`: auto
|
414 |
+
- `push_to_hub_model_id`: None
|
415 |
+
- `push_to_hub_organization`: None
|
416 |
+
- `mp_parameters`:
|
417 |
+
- `auto_find_batch_size`: False
|
418 |
+
- `full_determinism`: False
|
419 |
+
- `torchdynamo`: None
|
420 |
+
- `ray_scope`: last
|
421 |
+
- `ddp_timeout`: 1800
|
422 |
+
- `torch_compile`: False
|
423 |
+
- `torch_compile_backend`: None
|
424 |
+
- `torch_compile_mode`: None
|
425 |
+
- `dispatch_batches`: None
|
426 |
+
- `split_batches`: None
|
427 |
+
- `include_tokens_per_second`: False
|
428 |
+
- `include_num_input_tokens_seen`: False
|
429 |
+
- `neftune_noise_alpha`: None
|
430 |
+
- `optim_target_modules`: None
|
431 |
+
- `batch_eval_metrics`: False
|
432 |
+
- `eval_on_start`: False
|
433 |
+
- `use_liger_kernel`: False
|
434 |
+
- `eval_use_gather_object`: False
|
435 |
+
- `average_tokens_across_devices`: False
|
436 |
+
- `prompts`: None
|
437 |
+
- `batch_sampler`: batch_sampler
|
438 |
+
- `multi_dataset_batch_sampler`: round_robin
|
439 |
+
|
440 |
+
</details>
|
441 |
+
|
442 |
+
### Training Logs
|
443 |
+
<details><summary>Click to expand</summary>
|
444 |
+
|
445 |
+
| Epoch | Step | Training Loss | code-docstring-dev_spearman_cosine |
|
446 |
+
|:------:|:------:|:-------------:|:----------------------------------:|
|
447 |
+
| 0.0084 | 500 | 0.9451 | - |
|
448 |
+
| 0.0168 | 1000 | 0.1154 | - |
|
449 |
+
| 0.0251 | 1500 | 0.0817 | - |
|
450 |
+
| 0.0335 | 2000 | 0.0733 | - |
|
451 |
+
| 0.0419 | 2500 | 0.0751 | - |
|
452 |
+
| 0.0503 | 3000 | 0.0629 | - |
|
453 |
+
| 0.0587 | 3500 | 0.0551 | - |
|
454 |
+
| 0.0671 | 4000 | 0.0604 | - |
|
455 |
+
| 0.0754 | 4500 | 0.0628 | - |
|
456 |
+
| 0.0838 | 5000 | 0.0548 | nan |
|
457 |
+
| 0.0922 | 5500 | 0.054 | - |
|
458 |
+
| 0.1006 | 6000 | 0.0538 | - |
|
459 |
+
| 0.1090 | 6500 | 0.0518 | - |
|
460 |
+
| 0.1173 | 7000 | 0.0543 | - |
|
461 |
+
| 0.1257 | 7500 | 0.0491 | - |
|
462 |
+
| 0.1341 | 8000 | 0.0446 | - |
|
463 |
+
| 0.1425 | 8500 | 0.049 | - |
|
464 |
+
| 0.1509 | 9000 | 0.0477 | - |
|
465 |
+
| 0.1592 | 9500 | 0.0458 | - |
|
466 |
+
| 0.1676 | 10000 | 0.0425 | nan |
|
467 |
+
| 0.1760 | 10500 | 0.0445 | - |
|
468 |
+
| 0.1844 | 11000 | 0.0397 | - |
|
469 |
+
| 0.1928 | 11500 | 0.044 | - |
|
470 |
+
| 0.2012 | 12000 | 0.0432 | - |
|
471 |
+
| 0.2095 | 12500 | 0.0402 | - |
|
472 |
+
| 0.2179 | 13000 | 0.0483 | - |
|
473 |
+
| 0.2263 | 13500 | 0.0434 | - |
|
474 |
+
| 0.2347 | 14000 | 0.0425 | - |
|
475 |
+
| 0.2431 | 14500 | 0.0464 | - |
|
476 |
+
| 0.2514 | 15000 | 0.038 | nan |
|
477 |
+
| 0.2598 | 15500 | 0.0391 | - |
|
478 |
+
| 0.2682 | 16000 | 0.0385 | - |
|
479 |
+
| 0.2766 | 16500 | 0.0383 | - |
|
480 |
+
| 0.2850 | 17000 | 0.0396 | - |
|
481 |
+
| 0.2933 | 17500 | 0.0394 | - |
|
482 |
+
| 0.3017 | 18000 | 0.0407 | - |
|
483 |
+
| 0.3101 | 18500 | 0.0437 | - |
|
484 |
+
| 0.3185 | 19000 | 0.0362 | - |
|
485 |
+
| 0.3269 | 19500 | 0.0398 | - |
|
486 |
+
| 0.3353 | 20000 | 0.0379 | nan |
|
487 |
+
| 0.3436 | 20500 | 0.0418 | - |
|
488 |
+
| 0.3520 | 21000 | 0.0348 | - |
|
489 |
+
| 0.3604 | 21500 | 0.0382 | - |
|
490 |
+
| 0.3688 | 22000 | 0.0374 | - |
|
491 |
+
| 0.3772 | 22500 | 0.038 | - |
|
492 |
+
| 0.3855 | 23000 | 0.0365 | - |
|
493 |
+
| 0.3939 | 23500 | 0.0348 | - |
|
494 |
+
| 0.4023 | 24000 | 0.0405 | - |
|
495 |
+
| 0.4107 | 24500 | 0.04 | - |
|
496 |
+
| 0.4191 | 25000 | 0.0362 | nan |
|
497 |
+
| 0.4275 | 25500 | 0.0327 | - |
|
498 |
+
| 0.4358 | 26000 | 0.0331 | - |
|
499 |
+
| 0.4442 | 26500 | 0.0309 | - |
|
500 |
+
| 0.4526 | 27000 | 0.0348 | - |
|
501 |
+
| 0.4610 | 27500 | 0.0295 | - |
|
502 |
+
| 0.4694 | 28000 | 0.0378 | - |
|
503 |
+
| 0.4777 | 28500 | 0.0318 | - |
|
504 |
+
| 0.4861 | 29000 | 0.0323 | - |
|
505 |
+
| 0.4945 | 29500 | 0.0315 | - |
|
506 |
+
| 0.5029 | 30000 | 0.0336 | nan |
|
507 |
+
| 0.5113 | 30500 | 0.0334 | - |
|
508 |
+
| 0.5196 | 31000 | 0.0342 | - |
|
509 |
+
| 0.5280 | 31500 | 0.0289 | - |
|
510 |
+
| 0.5364 | 32000 | 0.0332 | - |
|
511 |
+
| 0.5448 | 32500 | 0.0305 | - |
|
512 |
+
| 0.5532 | 33000 | 0.0349 | - |
|
513 |
+
| 0.5616 | 33500 | 0.0309 | - |
|
514 |
+
| 0.5699 | 34000 | 0.0352 | - |
|
515 |
+
| 0.5783 | 34500 | 0.035 | - |
|
516 |
+
| 0.5867 | 35000 | 0.0316 | nan |
|
517 |
+
| 0.5951 | 35500 | 0.0342 | - |
|
518 |
+
| 0.6035 | 36000 | 0.0274 | - |
|
519 |
+
| 0.6118 | 36500 | 0.0333 | - |
|
520 |
+
| 0.6202 | 37000 | 0.0294 | - |
|
521 |
+
| 0.6286 | 37500 | 0.029 | - |
|
522 |
+
| 0.6370 | 38000 | 0.0302 | - |
|
523 |
+
| 0.6454 | 38500 | 0.0292 | - |
|
524 |
+
| 0.6537 | 39000 | 0.032 | - |
|
525 |
+
| 0.6621 | 39500 | 0.03 | - |
|
526 |
+
| 0.6705 | 40000 | 0.0246 | nan |
|
527 |
+
| 0.6789 | 40500 | 0.0277 | - |
|
528 |
+
| 0.6873 | 41000 | 0.0262 | - |
|
529 |
+
| 0.6957 | 41500 | 0.0293 | - |
|
530 |
+
| 0.7040 | 42000 | 0.0284 | - |
|
531 |
+
| 0.7124 | 42500 | 0.028 | - |
|
532 |
+
| 0.7208 | 43000 | 0.0321 | - |
|
533 |
+
| 0.7292 | 43500 | 0.0283 | - |
|
534 |
+
| 0.7376 | 44000 | 0.0295 | - |
|
535 |
+
| 0.7459 | 44500 | 0.0279 | - |
|
536 |
+
| 0.7543 | 45000 | 0.0249 | nan |
|
537 |
+
| 0.7627 | 45500 | 0.0299 | - |
|
538 |
+
| 0.7711 | 46000 | 0.0258 | - |
|
539 |
+
| 0.7795 | 46500 | 0.0257 | - |
|
540 |
+
| 0.7879 | 47000 | 0.0256 | - |
|
541 |
+
| 0.7962 | 47500 | 0.0281 | - |
|
542 |
+
| 0.8046 | 48000 | 0.0279 | - |
|
543 |
+
| 0.8130 | 48500 | 0.0299 | - |
|
544 |
+
| 0.8214 | 49000 | 0.027 | - |
|
545 |
+
| 0.8298 | 49500 | 0.0271 | - |
|
546 |
+
| 0.8381 | 50000 | 0.0281 | nan |
|
547 |
+
| 0.8465 | 50500 | 0.0274 | - |
|
548 |
+
| 0.8549 | 51000 | 0.0262 | - |
|
549 |
+
| 0.8633 | 51500 | 0.0306 | - |
|
550 |
+
| 0.8717 | 52000 | 0.0262 | - |
|
551 |
+
| 0.8800 | 52500 | 0.0241 | - |
|
552 |
+
| 0.8884 | 53000 | 0.0235 | - |
|
553 |
+
| 0.8968 | 53500 | 0.0268 | - |
|
554 |
+
| 0.9052 | 54000 | 0.0251 | - |
|
555 |
+
| 0.9136 | 54500 | 0.0328 | - |
|
556 |
+
| 0.9220 | 55000 | 0.0235 | nan |
|
557 |
+
| 0.9303 | 55500 | 0.0261 | - |
|
558 |
+
| 0.9387 | 56000 | 0.0249 | - |
|
559 |
+
| 0.9471 | 56500 | 0.0262 | - |
|
560 |
+
| 0.9555 | 57000 | 0.0231 | - |
|
561 |
+
| 0.9639 | 57500 | 0.0249 | - |
|
562 |
+
| 0.9722 | 58000 | 0.0246 | - |
|
563 |
+
| 0.9806 | 58500 | 0.0299 | - |
|
564 |
+
| 0.9890 | 59000 | 0.0238 | - |
|
565 |
+
| 0.9974 | 59500 | 0.0215 | - |
|
566 |
+
| 1.0 | 59656 | - | nan |
|
567 |
+
| 1.0058 | 60000 | 0.0157 | nan |
|
568 |
+
| 1.0141 | 60500 | 0.0095 | - |
|
569 |
+
| 1.0225 | 61000 | 0.012 | - |
|
570 |
+
| 1.0309 | 61500 | 0.0105 | - |
|
571 |
+
| 1.0393 | 62000 | 0.01 | - |
|
572 |
+
| 1.0477 | 62500 | 0.0101 | - |
|
573 |
+
| 1.0561 | 63000 | 0.0107 | - |
|
574 |
+
| 1.0644 | 63500 | 0.0102 | - |
|
575 |
+
| 1.0728 | 64000 | 0.011 | - |
|
576 |
+
| 1.0812 | 64500 | 0.0088 | - |
|
577 |
+
| 1.0896 | 65000 | 0.0106 | nan |
|
578 |
+
| 1.0980 | 65500 | 0.0108 | - |
|
579 |
+
| 1.1063 | 66000 | 0.0108 | - |
|
580 |
+
| 1.1147 | 66500 | 0.011 | - |
|
581 |
+
| 1.1231 | 67000 | 0.0082 | - |
|
582 |
+
| 1.1315 | 67500 | 0.0092 | - |
|
583 |
+
| 1.1399 | 68000 | 0.0106 | - |
|
584 |
+
| 1.1482 | 68500 | 0.0117 | - |
|
585 |
+
| 1.1566 | 69000 | 0.0096 | - |
|
586 |
+
| 1.1650 | 69500 | 0.0094 | - |
|
587 |
+
| 1.1734 | 70000 | 0.0098 | nan |
|
588 |
+
| 1.1818 | 70500 | 0.0084 | - |
|
589 |
+
| 1.1902 | 71000 | 0.0103 | - |
|
590 |
+
| 1.1985 | 71500 | 0.0112 | - |
|
591 |
+
| 1.2069 | 72000 | 0.0108 | - |
|
592 |
+
| 1.2153 | 72500 | 0.0121 | - |
|
593 |
+
| 1.2237 | 73000 | 0.0103 | - |
|
594 |
+
| 1.2321 | 73500 | 0.012 | - |
|
595 |
+
| 1.2404 | 74000 | 0.0134 | - |
|
596 |
+
| 1.2488 | 74500 | 0.0097 | - |
|
597 |
+
| 1.2572 | 75000 | 0.0121 | nan |
|
598 |
+
| 1.2656 | 75500 | 0.0117 | - |
|
599 |
+
| 1.2740 | 76000 | 0.0108 | - |
|
600 |
+
| 1.2824 | 76500 | 0.0106 | - |
|
601 |
+
| 1.2907 | 77000 | 0.0085 | - |
|
602 |
+
| 1.2991 | 77500 | 0.0119 | - |
|
603 |
+
| 1.3075 | 78000 | 0.0099 | - |
|
604 |
+
| 1.3159 | 78500 | 0.0102 | - |
|
605 |
+
| 1.3243 | 79000 | 0.011 | - |
|
606 |
+
| 1.3326 | 79500 | 0.0108 | - |
|
607 |
+
| 1.3410 | 80000 | 0.0097 | nan |
|
608 |
+
| 1.3494 | 80500 | 0.0101 | - |
|
609 |
+
| 1.3578 | 81000 | 0.0082 | - |
|
610 |
+
| 1.3662 | 81500 | 0.0107 | - |
|
611 |
+
| 1.3745 | 82000 | 0.013 | - |
|
612 |
+
| 1.3829 | 82500 | 0.0068 | - |
|
613 |
+
| 1.3913 | 83000 | 0.0102 | - |
|
614 |
+
| 1.3997 | 83500 | 0.0079 | - |
|
615 |
+
| 1.4081 | 84000 | 0.0116 | - |
|
616 |
+
| 1.4165 | 84500 | 0.0095 | - |
|
617 |
+
| 1.4248 | 85000 | 0.0105 | nan |
|
618 |
+
| 1.4332 | 85500 | 0.011 | - |
|
619 |
+
| 1.4416 | 86000 | 0.0131 | - |
|
620 |
+
| 1.4500 | 86500 | 0.012 | - |
|
621 |
+
| 1.4584 | 87000 | 0.0105 | - |
|
622 |
+
| 1.4667 | 87500 | 0.0117 | - |
|
623 |
+
| 1.4751 | 88000 | 0.0101 | - |
|
624 |
+
| 1.4835 | 88500 | 0.0108 | - |
|
625 |
+
| 1.4919 | 89000 | 0.0091 | - |
|
626 |
+
| 1.5003 | 89500 | 0.0086 | - |
|
627 |
+
| 1.5086 | 90000 | 0.0093 | nan |
|
628 |
+
| 1.5170 | 90500 | 0.0102 | - |
|
629 |
+
| 1.5254 | 91000 | 0.0078 | - |
|
630 |
+
| 1.5338 | 91500 | 0.0096 | - |
|
631 |
+
| 1.5422 | 92000 | 0.0103 | - |
|
632 |
+
| 1.5506 | 92500 | 0.0099 | - |
|
633 |
+
| 1.5589 | 93000 | 0.011 | - |
|
634 |
+
| 1.5673 | 93500 | 0.0079 | - |
|
635 |
+
| 1.5757 | 94000 | 0.0108 | - |
|
636 |
+
| 1.5841 | 94500 | 0.0089 | - |
|
637 |
+
| 1.5925 | 95000 | 0.0115 | nan |
|
638 |
+
| 1.6008 | 95500 | 0.0092 | - |
|
639 |
+
| 1.6092 | 96000 | 0.0093 | - |
|
640 |
+
| 1.6176 | 96500 | 0.0083 | - |
|
641 |
+
| 1.6260 | 97000 | 0.0103 | - |
|
642 |
+
| 1.6344 | 97500 | 0.01 | - |
|
643 |
+
| 1.6428 | 98000 | 0.0091 | - |
|
644 |
+
| 1.6511 | 98500 | 0.0106 | - |
|
645 |
+
| 1.6595 | 99000 | 0.0105 | - |
|
646 |
+
| 1.6679 | 99500 | 0.0096 | - |
|
647 |
+
| 1.6763 | 100000 | 0.0116 | nan |
|
648 |
+
| 1.6847 | 100500 | 0.0093 | - |
|
649 |
+
| 1.6930 | 101000 | 0.01 | - |
|
650 |
+
| 1.7014 | 101500 | 0.0076 | - |
|
651 |
+
| 1.7098 | 102000 | 0.0078 | - |
|
652 |
+
| 1.7182 | 102500 | 0.0089 | - |
|
653 |
+
| 1.7266 | 103000 | 0.0082 | - |
|
654 |
+
| 1.7349 | 103500 | 0.0081 | - |
|
655 |
+
| 1.7433 | 104000 | 0.009 | - |
|
656 |
+
| 1.7517 | 104500 | 0.0082 | - |
|
657 |
+
| 1.7601 | 105000 | 0.008 | nan |
|
658 |
+
| 1.7685 | 105500 | 0.0082 | - |
|
659 |
+
| 1.7769 | 106000 | 0.0077 | - |
|
660 |
+
| 1.7852 | 106500 | 0.0103 | - |
|
661 |
+
| 1.7936 | 107000 | 0.0103 | - |
|
662 |
+
| 1.8020 | 107500 | 0.0103 | - |
|
663 |
+
| 1.8104 | 108000 | 0.0079 | - |
|
664 |
+
| 1.8188 | 108500 | 0.0082 | - |
|
665 |
+
| 1.8271 | 109000 | 0.0088 | - |
|
666 |
+
| 1.8355 | 109500 | 0.0096 | - |
|
667 |
+
| 1.8439 | 110000 | 0.0097 | nan |
|
668 |
+
| 1.8523 | 110500 | 0.0085 | - |
|
669 |
+
| 1.8607 | 111000 | 0.01 | - |
|
670 |
+
| 1.8690 | 111500 | 0.0114 | - |
|
671 |
+
| 1.8774 | 112000 | 0.0075 | - |
|
672 |
+
| 1.8858 | 112500 | 0.0083 | - |
|
673 |
+
| 1.8942 | 113000 | 0.0113 | - |
|
674 |
+
| 1.9026 | 113500 | 0.0077 | - |
|
675 |
+
| 1.9110 | 114000 | 0.0077 | - |
|
676 |
+
| 1.9193 | 114500 | 0.0107 | - |
|
677 |
+
| 1.9277 | 115000 | 0.0077 | nan |
|
678 |
+
| 1.9361 | 115500 | 0.0094 | - |
|
679 |
+
| 1.9445 | 116000 | 0.0082 | - |
|
680 |
+
| 1.9529 | 116500 | 0.0089 | - |
|
681 |
+
| 1.9612 | 117000 | 0.0066 | - |
|
682 |
+
| 1.9696 | 117500 | 0.0102 | - |
|
683 |
+
| 1.9780 | 118000 | 0.0097 | - |
|
684 |
+
| 1.9864 | 118500 | 0.0081 | - |
|
685 |
+
| 1.9948 | 119000 | 0.0086 | - |
|
686 |
+
| 2.0 | 119312 | - | nan |
|
687 |
+
| 2.0032 | 119500 | 0.0063 | - |
|
688 |
+
| 2.0115 | 120000 | 0.0051 | nan |
|
689 |
+
| 2.0199 | 120500 | 0.0037 | - |
|
690 |
+
| 2.0283 | 121000 | 0.0062 | - |
|
691 |
+
| 2.0367 | 121500 | 0.0045 | - |
|
692 |
+
| 2.0451 | 122000 | 0.0046 | - |
|
693 |
+
| 2.0534 | 122500 | 0.0038 | - |
|
694 |
+
| 2.0618 | 123000 | 0.0044 | - |
|
695 |
+
| 2.0702 | 123500 | 0.0042 | - |
|
696 |
+
| 2.0786 | 124000 | 0.0029 | - |
|
697 |
+
| 2.0870 | 124500 | 0.0029 | - |
|
698 |
+
| 2.0953 | 125000 | 0.0067 | nan |
|
699 |
+
| 2.1037 | 125500 | 0.0067 | - |
|
700 |
+
| 2.1121 | 126000 | 0.005 | - |
|
701 |
+
| 2.1205 | 126500 | 0.005 | - |
|
702 |
+
| 2.1289 | 127000 | 0.0037 | - |
|
703 |
+
| 2.1373 | 127500 | 0.0043 | - |
|
704 |
+
| 2.1456 | 128000 | 0.0036 | - |
|
705 |
+
| 2.1540 | 128500 | 0.0042 | - |
|
706 |
+
| 2.1624 | 129000 | 0.0039 | - |
|
707 |
+
| 2.1708 | 129500 | 0.0032 | - |
|
708 |
+
| 2.1792 | 130000 | 0.0046 | nan |
|
709 |
+
| 2.1875 | 130500 | 0.0037 | - |
|
710 |
+
| 2.1959 | 131000 | 0.0036 | - |
|
711 |
+
| 2.2043 | 131500 | 0.0042 | - |
|
712 |
+
| 2.2127 | 132000 | 0.0044 | - |
|
713 |
+
| 2.2211 | 132500 | 0.0028 | - |
|
714 |
+
| 2.2294 | 133000 | 0.0043 | - |
|
715 |
+
| 2.2378 | 133500 | 0.0052 | - |
|
716 |
+
| 2.2462 | 134000 | 0.0031 | - |
|
717 |
+
| 2.2546 | 134500 | 0.0048 | - |
|
718 |
+
| 2.2630 | 135000 | 0.0031 | nan |
|
719 |
+
| 2.2714 | 135500 | 0.0054 | - |
|
720 |
+
| 2.2797 | 136000 | 0.0033 | - |
|
721 |
+
| 2.2881 | 136500 | 0.0036 | - |
|
722 |
+
| 2.2965 | 137000 | 0.0033 | - |
|
723 |
+
| 2.3049 | 137500 | 0.0039 | - |
|
724 |
+
| 2.3133 | 138000 | 0.0044 | - |
|
725 |
+
| 2.3216 | 138500 | 0.0034 | - |
|
726 |
+
| 2.3300 | 139000 | 0.0058 | - |
|
727 |
+
| 2.3384 | 139500 | 0.0036 | - |
|
728 |
+
| 2.3468 | 140000 | 0.0033 | nan |
|
729 |
+
| 2.3552 | 140500 | 0.0034 | - |
|
730 |
+
| 2.3636 | 141000 | 0.0032 | - |
|
731 |
+
| 2.3719 | 141500 | 0.0036 | - |
|
732 |
+
| 2.3803 | 142000 | 0.0038 | - |
|
733 |
+
| 2.3887 | 142500 | 0.0036 | - |
|
734 |
+
| 2.3971 | 143000 | 0.0045 | - |
|
735 |
+
| 2.4055 | 143500 | 0.0035 | - |
|
736 |
+
| 2.4138 | 144000 | 0.0042 | - |
|
737 |
+
| 2.4222 | 144500 | 0.0029 | - |
|
738 |
+
| 2.4306 | 145000 | 0.005 | nan |
|
739 |
+
| 2.4390 | 145500 | 0.0045 | - |
|
740 |
+
| 2.4474 | 146000 | 0.0035 | - |
|
741 |
+
| 2.4557 | 146500 | 0.004 | - |
|
742 |
+
| 2.4641 | 147000 | 0.0044 | - |
|
743 |
+
| 2.4725 | 147500 | 0.0036 | - |
|
744 |
+
| 2.4809 | 148000 | 0.0047 | - |
|
745 |
+
| 2.4893 | 148500 | 0.0035 | - |
|
746 |
+
| 2.4977 | 149000 | 0.0048 | - |
|
747 |
+
| 2.5060 | 149500 | 0.0041 | - |
|
748 |
+
| 2.5144 | 150000 | 0.0029 | nan |
|
749 |
+
| 2.5228 | 150500 | 0.0038 | - |
|
750 |
+
| 2.5312 | 151000 | 0.0032 | - |
|
751 |
+
| 2.5396 | 151500 | 0.0043 | - |
|
752 |
+
| 2.5479 | 152000 | 0.0038 | - |
|
753 |
+
| 2.5563 | 152500 | 0.0037 | - |
|
754 |
+
| 2.5647 | 153000 | 0.0023 | - |
|
755 |
+
| 2.5731 | 153500 | 0.0041 | - |
|
756 |
+
| 2.5815 | 154000 | 0.0049 | - |
|
757 |
+
| 2.5898 | 154500 | 0.0048 | - |
|
758 |
+
| 2.5982 | 155000 | 0.0034 | nan |
|
759 |
+
| 2.6066 | 155500 | 0.0031 | - |
|
760 |
+
| 2.6150 | 156000 | 0.0036 | - |
|
761 |
+
| 2.6234 | 156500 | 0.0034 | - |
|
762 |
+
| 2.6318 | 157000 | 0.0037 | - |
|
763 |
+
| 2.6401 | 157500 | 0.0035 | - |
|
764 |
+
| 2.6485 | 158000 | 0.0037 | - |
|
765 |
+
| 2.6569 | 158500 | 0.0043 | - |
|
766 |
+
| 2.6653 | 159000 | 0.0042 | - |
|
767 |
+
| 2.6737 | 159500 | 0.0049 | - |
|
768 |
+
| 2.6820 | 160000 | 0.0035 | nan |
|
769 |
+
| 2.6904 | 160500 | 0.0026 | - |
|
770 |
+
| 2.6988 | 161000 | 0.0049 | - |
|
771 |
+
| 2.7072 | 161500 | 0.0034 | - |
|
772 |
+
| 2.7156 | 162000 | 0.0039 | - |
|
773 |
+
| 2.7240 | 162500 | 0.0042 | - |
|
774 |
+
| 2.7323 | 163000 | 0.0052 | - |
|
775 |
+
| 2.7407 | 163500 | 0.0045 | - |
|
776 |
+
| 2.7491 | 164000 | 0.0043 | - |
|
777 |
+
| 2.7575 | 164500 | 0.0034 | - |
|
778 |
+
| 2.7659 | 165000 | 0.0038 | nan |
|
779 |
+
| 2.7742 | 165500 | 0.0029 | - |
|
780 |
+
| 2.7826 | 166000 | 0.0041 | - |
|
781 |
+
| 2.7910 | 166500 | 0.0041 | - |
|
782 |
+
| 2.7994 | 167000 | 0.0048 | - |
|
783 |
+
| 2.8078 | 167500 | 0.0044 | - |
|
784 |
+
| 2.8161 | 168000 | 0.0041 | - |
|
785 |
+
| 2.8245 | 168500 | 0.0035 | - |
|
786 |
+
| 2.8329 | 169000 | 0.0026 | - |
|
787 |
+
| 2.8413 | 169500 | 0.0033 | - |
|
788 |
+
| 2.8497 | 170000 | 0.0048 | nan |
|
789 |
+
| 2.8581 | 170500 | 0.0046 | - |
|
790 |
+
| 2.8664 | 171000 | 0.0027 | - |
|
791 |
+
| 2.8748 | 171500 | 0.0037 | - |
|
792 |
+
| 2.8832 | 172000 | 0.0028 | - |
|
793 |
+
| 2.8916 | 172500 | 0.0032 | - |
|
794 |
+
| 2.9000 | 173000 | 0.0029 | - |
|
795 |
+
| 2.9083 | 173500 | 0.0043 | - |
|
796 |
+
| 2.9167 | 174000 | 0.0048 | - |
|
797 |
+
| 2.9251 | 174500 | 0.0037 | - |
|
798 |
+
| 2.9335 | 175000 | 0.003 | nan |
|
799 |
+
| 2.9419 | 175500 | 0.0034 | - |
|
800 |
+
| 2.9502 | 176000 | 0.0035 | - |
|
801 |
+
| 2.9586 | 176500 | 0.0042 | - |
|
802 |
+
| 2.9670 | 177000 | 0.005 | - |
|
803 |
+
| 2.9754 | 177500 | 0.0038 | - |
|
804 |
+
| 2.9838 | 178000 | 0.0032 | - |
|
805 |
+
| 2.9922 | 178500 | 0.0028 | - |
|
806 |
+
| 3.0 | 178968 | - | nan |
|
807 |
+
|
808 |
+
</details>
|
809 |
+
|
810 |
+
### Framework Versions
|
811 |
+
- Python: 3.11.11
|
812 |
+
- Sentence Transformers: 3.4.1
|
813 |
+
- Transformers: 4.50.0
|
814 |
+
- PyTorch: 2.6.0+cu124
|
815 |
+
- Accelerate: 1.5.2
|
816 |
+
- Datasets: 3.4.1
|
817 |
+
- Tokenizers: 0.21.1
|
818 |
+
|
819 |
+
## Citation
|
820 |
+
|
821 |
+
### BibTeX
|
822 |
+
|
823 |
+
#### Sentence Transformers
|
824 |
+
```bibtex
|
825 |
+
@inproceedings{reimers-2019-sentence-bert,
|
826 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
827 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
828 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
829 |
+
month = "11",
|
830 |
+
year = "2019",
|
831 |
+
publisher = "Association for Computational Linguistics",
|
832 |
+
url = "https://arxiv.org/abs/1908.10084",
|
833 |
+
}
|
834 |
+
```
|
835 |
+
|
836 |
+
#### MultipleNegativesRankingLoss
|
837 |
+
```bibtex
|
838 |
+
@misc{henderson2017efficient,
|
839 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
840 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
841 |
+
year={2017},
|
842 |
+
eprint={1705.00652},
|
843 |
+
archivePrefix={arXiv},
|
844 |
+
primaryClass={cs.CL}
|
845 |
+
}
|
846 |
+
```
|
847 |
+
|
848 |
+
<!--
|
849 |
+
## Glossary
|
850 |
+
|
851 |
+
*Clearly define terms in order to be accessible across audiences.*
|
852 |
+
-->
|
853 |
+
|
854 |
+
<!--
|
855 |
+
## Model Card Authors
|
856 |
+
|
857 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
858 |
+
-->
|
859 |
+
|
860 |
+
<!--
|
861 |
+
## Model Card Contact
|
862 |
+
|
863 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
864 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 50001,
|
3 |
+
"<mask>": 50003,
|
4 |
+
"<s>": 50000,
|
5 |
+
"<unk>": 50002
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertModel"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"bos_token_id": 50000,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "cls",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50001,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"hidden_activation": "gelu",
|
21 |
+
"hidden_dropout_prob": 0.1,
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 3072,
|
26 |
+
"local_attention": 128,
|
27 |
+
"local_attention_rope_theta": 10000,
|
28 |
+
"local_attention_window": 128,
|
29 |
+
"local_rope_theta": 10000.0,
|
30 |
+
"max_position_embeddings": 2048,
|
31 |
+
"mlp_bias": false,
|
32 |
+
"mlp_dropout": 0.0,
|
33 |
+
"model_type": "modernbert",
|
34 |
+
"norm_bias": false,
|
35 |
+
"norm_eps": 1e-05,
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 12,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"reference_compile": true,
|
40 |
+
"repad_logits_with_grad": false,
|
41 |
+
"rope_theta": 160000,
|
42 |
+
"sep_token_id": 50282,
|
43 |
+
"sparse_pred_ignore_index": -100,
|
44 |
+
"sparse_prediction": false,
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.50.0",
|
47 |
+
"type_vocab_size": 2,
|
48 |
+
"vocab_size": 50004
|
49 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.50.0",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce36f107bd10656b4ecc916283ead69854b319716689adb30de197cde6dd8aed
|
3 |
+
size 606681112
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 2048,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[UNK]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[CLS]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[SEP]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"50000": {
|
45 |
+
"content": "<s>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"50001": {
|
53 |
+
"content": "</s>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"50002": {
|
61 |
+
"content": "<unk>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"50003": {
|
69 |
+
"content": "<mask>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"bos_token": "<s>",
|
78 |
+
"clean_up_tokenization_spaces": false,
|
79 |
+
"cls_token": "<s>",
|
80 |
+
"eos_token": "</s>",
|
81 |
+
"errors": "replace",
|
82 |
+
"extra_special_tokens": {},
|
83 |
+
"mask_token": "<mask>",
|
84 |
+
"max_length": null,
|
85 |
+
"model_max_length": 1000000000000000019884624838656,
|
86 |
+
"pad_to_multiple_of": null,
|
87 |
+
"pad_token": "[PAD]",
|
88 |
+
"pad_token_type_id": 0,
|
89 |
+
"padding_side": "right",
|
90 |
+
"sep_token": "</s>",
|
91 |
+
"stride": 0,
|
92 |
+
"tokenizer_class": "RobertaTokenizer",
|
93 |
+
"trim_offsets": true,
|
94 |
+
"truncation_side": "right",
|
95 |
+
"truncation_strategy": "longest_first",
|
96 |
+
"unk_token": "<unk>"
|
97 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|