--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.85588 --- # my_awesome_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.8771 - Accuracy: 0.8559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3564 | 1.0 | 1563 | 0.3677 | 0.8426 | | 0.2878 | 2.0 | 3126 | 0.3378 | 0.8588 | | 0.2124 | 3.0 | 4689 | 0.4398 | 0.8550 | | 0.1556 | 4.0 | 6252 | 0.5750 | 0.8555 | | 0.1075 | 5.0 | 7815 | 0.6733 | 0.8558 | | 0.0831 | 6.0 | 9378 | 0.7218 | 0.8561 | | 0.0652 | 7.0 | 10941 | 0.7331 | 0.8564 | | 0.0458 | 8.0 | 12504 | 0.8166 | 0.8538 | | 0.0415 | 9.0 | 14067 | 0.8619 | 0.8568 | | 0.0357 | 10.0 | 15630 | 0.8771 | 0.8559 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2