--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model_imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.85908 --- # my_awesome_model_imdb This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7781 - Accuracy: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4013 | 1.0 | 782 | 0.3535 | 0.8445 | | 0.2107 | 2.0 | 1564 | 0.3589 | 0.8550 | | 0.1158 | 3.0 | 2346 | 0.5241 | 0.8576 | | 0.0423 | 4.0 | 3128 | 0.7881 | 0.8545 | | 0.0238 | 5.0 | 3910 | 0.7781 | 0.8591 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2