--- license: cc-by-nc-4.0 base_model: AIMH/mental-bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERTForDetectingDepression-Twitter2020 results: [] --- # BERTForDetectingDepression-Twitter2020 This model is a fine-tuned version of [AIMH/mental-bert-base-cased](https://huggingface.co/AIMH/mental-bert-base-cased) on data taken from [Safa, R., Bayat, P. & Moghtader, L. Automatic detection of depression symptoms in twitter using multimodal analysis. J Supercomput (2021).](https://doi.org/10.1007/s11227-021-04040-8). It achieves the following results on the evaluation set: - Loss: 0.8966 - Accuracy: 0.6445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Eval Accuracy: 0.6445 Eval Precision: 0.627281460134486 Eval Recall: 0.6690573770491803 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.083803249747333e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6484 | 1.0 | 4500 | 0.6851 | 0.637 | | 0.5904 | 2.0 | 9000 | 0.8966 | 0.6445 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1