File size: 2,479 Bytes
37c517d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas as pd
import torch
from transformers import DebertaV2ForSequenceClassification, DebertaV2Tokenizer, DataCollatorWithPadding, Trainer, TrainingArguments
from tqdm import tqdm
from datasets import Dataset, load_dataset
import numpy as np
import wandb
from sklearn.metrics import accuracy_score, precision_recall_fscore_support

output_dir = './german_politic_DeBERTa-v2-base'
model_name = "ikim-uk-essen/geberta-base"
max_length = 512
id2label = {0: 'other', 1: 'politic'}
label2id = {'other': 0, 'politic': 1}

wandb.init(project="german_politic_yes_no_classifier", entity="xxx", name="german_politic_DeBERTa")

model = DebertaV2ForSequenceClassification.from_pretrained(model_name, num_labels = 2, id2label=id2label, label2id=label2id, output_attentions = False, output_hidden_states = False)
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name, do_lower_case=False, max_length = max_length, TOKENIZERS_PARALLELISM=True)

dataset = load_dataset("SinclairSchneider/trainset_political_text_yes_no_german")
dataset = dataset['train'].train_test_split(0.2)

def preprocess(sample):
    return tokenizer(sample["text"], truncation=True)

dataset_tokenized = dataset.map(preprocess, batched = True)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
    acc = accuracy_score(labels, preds)
    return {
        'accuracy': acc,
        'f1': f1,
        'precision': precision,
        'recall': recall
    }

training_args = TrainingArguments(
    output_dir = output_dir,
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=4,
    weight_decay=0.01,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
    report_to="wandb",
    fp16 = False,
    logging_steps = 8,
    disable_tqdm = False,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset_tokenized["train"],
    eval_dataset=dataset_tokenized["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)

trainer.train()

model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)