--- library_name: transformers datasets: - SinclairSchneider/trainset_political_text_yes_no_german language: - de base_model: - EuroBERT/EuroBERT-210m --- This classifier tells whether a German text is a political text or not. It is based on the model EuroBERT/EuroBERT-210m and trained on the dataset SinclairSchneider/trainset_political_text_yes_no_german. The train script can be found under this [link](https://huggingface.co/SinclairSchneider/german_politic_DeBERTa-v2-base/blob/main/train.py) The model achieved an F1 score of 0.99 on the testset. Contrary to SinclairSchneider/german_politic_DeBERTa-v2-base this model is capable to cover a 8k context length. ```python from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer model_name = "SinclairSchneider/german_politic_EuroBERT-210m" model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, TOKENIZERS_PARALLELISM=True, trust_remote_code=True) political_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, trust_remote_code=True) political_classifier("Trump und Putin einigen sich auf begrenzte Waffenruhe") [{'label': 'politic', 'score': 0.9991077780723572}] political_classifier("Franck Ribéry und Arjen Robben feiern beim \"Beckenbauer Cup\" ihr Comeback beim FC Bayern. Sie präsentieren sich wie zu besten Zeiten und wecken eine große Sehnsucht beim Rekordmeister.") [{'label': 'other', 'score': 0.9865761995315552}] ``` # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]