|
import torch |
|
from transformers import AutoModelForImageClassification, AutoFeatureExtractor |
|
from PIL import Image |
|
|
|
|
|
model = AutoModelForImageClassification.from_pretrained("your-username/deepfake-recognition") |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("your-username/deepfake-recognition") |
|
|
|
|
|
image = Image.open("sample_image.jpg") |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
|
|
|
|
outputs = model(**inputs) |
|
predicted_class = torch.argmax(outputs.logits, dim=1).item() |
|
|
|
print(f"Predicted Class: {'Deepfake' if predicted_class == 1 else 'Real'}") |
|
|