update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-mbert-ours-run-4
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-mbert-ours-run-4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.0173
|
23 |
+
- Accuracy: 0.68
|
24 |
+
- Precision: 0.6330
|
25 |
+
- Recall: 0.6325
|
26 |
+
- F1: 0.6320
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.9781 | 1.0 | 100 | 0.8852 | 0.55 | 0.4044 | 0.5284 | 0.4211 |
|
58 |
+
| 0.7568 | 2.0 | 200 | 0.8110 | 0.655 | 0.5994 | 0.6013 | 0.5762 |
|
59 |
+
| 0.5121 | 3.0 | 300 | 0.9735 | 0.65 | 0.6145 | 0.6131 | 0.5965 |
|
60 |
+
| 0.314 | 4.0 | 400 | 1.1324 | 0.65 | 0.6305 | 0.6355 | 0.6266 |
|
61 |
+
| 0.1298 | 5.0 | 500 | 2.8247 | 0.61 | 0.5804 | 0.5087 | 0.5092 |
|
62 |
+
| 0.1013 | 6.0 | 600 | 2.8183 | 0.635 | 0.6212 | 0.5674 | 0.5667 |
|
63 |
+
| 0.0989 | 7.0 | 700 | 2.3235 | 0.635 | 0.5944 | 0.5922 | 0.5916 |
|
64 |
+
| 0.0481 | 8.0 | 800 | 2.5240 | 0.68 | 0.6334 | 0.6172 | 0.6221 |
|
65 |
+
| 0.018 | 9.0 | 900 | 2.6782 | 0.65 | 0.6123 | 0.6054 | 0.6062 |
|
66 |
+
| 0.0285 | 10.0 | 1000 | 2.3400 | 0.67 | 0.6206 | 0.6327 | 0.6189 |
|
67 |
+
| 0.014 | 11.0 | 1100 | 2.6558 | 0.66 | 0.6098 | 0.5992 | 0.6018 |
|
68 |
+
| 0.0085 | 12.0 | 1200 | 2.9366 | 0.66 | 0.6076 | 0.5961 | 0.5991 |
|
69 |
+
| 0.0106 | 13.0 | 1300 | 2.8567 | 0.665 | 0.6198 | 0.6193 | 0.6186 |
|
70 |
+
| 0.0097 | 14.0 | 1400 | 3.1526 | 0.64 | 0.6089 | 0.5975 | 0.5954 |
|
71 |
+
| 0.0022 | 15.0 | 1500 | 2.7305 | 0.69 | 0.6404 | 0.6404 | 0.6398 |
|
72 |
+
| 0.0016 | 16.0 | 1600 | 2.7670 | 0.69 | 0.6418 | 0.6434 | 0.6425 |
|
73 |
+
| 0.0017 | 17.0 | 1700 | 2.8193 | 0.7 | 0.6533 | 0.6566 | 0.6546 |
|
74 |
+
| 0.0009 | 18.0 | 1800 | 2.9959 | 0.685 | 0.6400 | 0.6389 | 0.6384 |
|
75 |
+
| 0.0006 | 19.0 | 1900 | 3.0153 | 0.68 | 0.6330 | 0.6325 | 0.6320 |
|
76 |
+
| 0.0005 | 20.0 | 2000 | 3.0173 | 0.68 | 0.6330 | 0.6325 | 0.6320 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.25.1
|
82 |
+
- Pytorch 1.13.0+cu116
|
83 |
+
- Tokenizers 0.13.2
|