--- license: mit library_name: transformers pipeline_tag: image-text-to-text --- # Skywork-R1V2-38B-AWQ
Introduction Image
## 📖 [R1V2 Report](https://arxiv.org/abs/2504.16656) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B)
[![GitHub Stars](https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/stargazers)[![GitHub Forks](https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/fork)
## Evaluation
Comprehensive performance comparison across text and multimodal reasoning benchmarks.
Model MMMU MathVista MathVision Olympiad Bench AIME 24 LiveCode bench Live Bench IFEVAL
Proprietary Models
Claude-3.5-Sonnet 70.4 67.7 - - - - - -
Gemini-2-Flash 70.7 73.1 41.3 - - - - -
Kimi-k1.5-longcot 70.0 74.9 53.3 - - - - -
OpenAI-o1 - - - - 74.3 63.4 72.2 -
OpenAI-o4-mini 81.6 84.3 58.0 - 93.4 74.6 78.1 -
Open-Source Models
Skywork-R1V1 68.0 67.0 - - 72.0 57.2 54.6 72.5
DeepseekR1-671B - - - - 79.8 65.9 71.6 83.3
InternVL3-38B 70.1 75.1 34.2 - - - - -
Qwen2.5-VL-72B 70.2 74.8 38.1 40.4 - - - -
QvQ-Preview-72B 70.3 71.4 35.9 33.2 - - - -
Skywork-R1V2 73.6 74.0 49.0 62.6 78.9 63.6 73.2 82.9
Skywork-R1V2-AWQ 64.4 64.8 42.9 54.8 77.3 55.7 64.1 72.5
## Usage You can use the quantized model with different inference frameworks: ### Using VLLM #### Python API ```python import os from vllm import LLM, SamplingParams from vllm.entrypoints.chat_utils import load_chat_template model_name = "Skywork/Skywork-R1V2-38B-AWQ" # or local path llm = LLM(model_name, dtype='float16', quantization="awq", gpu_memory_utilization=0.9, max_model_len=4096, trust_remote_code=True, ) # Add your inference code here ``` #### OpenAI-compatible API Server ```bash MODEL_ID="Skywork/Skywork-R1V2-38B-AWQ" # or local path CUDA_VISIBLE_DEVICES=0 \ python -m vllm.entrypoints.openai.api_server \ --model $MODEL_ID \ --dtype float16 \ --quantization awq \ --port 23334 \ --max-model-len 12000 \ --gpu-memory-utilization 0.9 \ --trust-remote-code ``` ### Using LMDeploy ```python import os from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig from lmdeploy.vl import load_image model_path = "Skywork/Skywork-R1V2-38B-AWQ" # or local path engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75) chat_template_config = ChatTemplateConfig(model_name=model_path) pipe = pipeline(model_path, backend_config=engine_config, chat_template_config=chat_template_config, ) # Example: Multimodal inference image = load_image('table.jpg') response = pipe(('Describe this image?', image)) print(response.text) ``` ## Hardware Requirements The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend: - At least one GPU with 30GB+ VRAM for inference - For optimal performance with longer contexts, 40GB+ VRAM is recommended ## Citation If you use this model in your research, please cite: ```bibtex @misc{peng2025skyworkr1vpioneeringmultimodal, title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou}, year={2025}, eprint={2504.05599}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.05599}, } ``` ```bibtex @misc{chris2025skyworkr1v2multimodalhybrid, title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning}, author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou}, year={2025}, eprint={2504.16656}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.16656}, } ```