Update README.md
Browse files
README.md
CHANGED
|
@@ -70,60 +70,34 @@ import torch
|
|
| 70 |
from PIL import Image
|
| 71 |
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
|
| 72 |
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
|
| 73 |
-
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
| 74 |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 75 |
|
| 76 |
# Load model components
|
| 77 |
-
pretrained_model_name_or_path = "/
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# BitsAndBytes config
|
| 82 |
-
bnb4 = BitsAndBytesConfig(
|
| 83 |
-
load_in_4bit=True,
|
| 84 |
-
bnb_4bit_use_double_quant=True,
|
| 85 |
-
bnb_4bit_quant_type="nf4",
|
| 86 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 87 |
-
)
|
| 88 |
-
bnb8 = BitsAndBytesConfig(load_in_8bit=True)
|
| 89 |
-
|
| 90 |
-
if quant == "int4":
|
| 91 |
-
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
| 92 |
-
pretrained_model_name_or_path, subfolder="transformer",
|
| 93 |
-
quantization_config=bnb4, device_map="auto", low_cpu_mem_usage=True
|
| 94 |
-
).cuda()
|
| 95 |
-
text_qconf = bnb8
|
| 96 |
-
vae_dtype = torch.float16
|
| 97 |
-
else: # fp16
|
| 98 |
-
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
| 99 |
-
pretrained_model_name_or_path, subfolder="transformer",
|
| 100 |
-
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
|
| 101 |
-
).cuda()
|
| 102 |
-
text_qconf = None
|
| 103 |
-
vae_dtype = torch.float16
|
| 104 |
|
| 105 |
vae = AutoencoderKL.from_pretrained(
|
| 106 |
pretrained_model_name_or_path, subfolder="vae",
|
| 107 |
-
torch_dtype=
|
| 108 |
-
)
|
| 109 |
|
| 110 |
# Load text encoders
|
| 111 |
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 112 |
-
pretrained_model_name_or_path, subfolder="text_encoder",
|
| 113 |
-
|
| 114 |
-
)
|
| 115 |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
| 116 |
|
| 117 |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
| 118 |
-
pretrained_model_name_or_path, subfolder="text_encoder_2",
|
| 119 |
-
|
| 120 |
-
)
|
| 121 |
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
| 122 |
|
| 123 |
text_encoder_3 = T5EncoderModel.from_pretrained(
|
| 124 |
-
pretrained_model_name_or_path, subfolder="text_encoder_3",
|
| 125 |
-
|
| 126 |
-
)
|
| 127 |
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
|
| 128 |
|
| 129 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
@@ -149,7 +123,6 @@ image = pipeline(
|
|
| 149 |
).images[0]
|
| 150 |
|
| 151 |
image.save("text2image.png")
|
| 152 |
-
print(f"Image saved to text2image.png (quant={quant})")
|
| 153 |
|
| 154 |
```
|
| 155 |
|
|
@@ -187,7 +160,6 @@ edited_image = pipeline(
|
|
| 187 |
).images[0]
|
| 188 |
|
| 189 |
edited_image.save("edited_img.png")
|
| 190 |
-
print(f"Edited Image saved to edited_img.png (quant={quant})")
|
| 191 |
|
| 192 |
```
|
| 193 |
|
|
|
|
| 70 |
from PIL import Image
|
| 71 |
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
|
| 72 |
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
|
| 73 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
| 74 |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 75 |
|
| 76 |
# Load model components
|
| 77 |
+
pretrained_model_name_or_path = "Skywork/UniPic2-SD3.5M-Kontext-2B"
|
| 78 |
+
|
| 79 |
+
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
| 80 |
+
pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
vae = AutoencoderKL.from_pretrained(
|
| 83 |
pretrained_model_name_or_path, subfolder="vae",
|
| 84 |
+
torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
| 85 |
+
).cuda()
|
| 86 |
|
| 87 |
# Load text encoders
|
| 88 |
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 89 |
+
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
| 90 |
+
).cuda()
|
|
|
|
| 91 |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
| 92 |
|
| 93 |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
| 94 |
+
pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
| 95 |
+
).cuda()
|
|
|
|
| 96 |
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
| 97 |
|
| 98 |
text_encoder_3 = T5EncoderModel.from_pretrained(
|
| 99 |
+
pretrained_model_name_or_path, subfolder="text_encoder_3", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
| 100 |
+
).cuda()
|
|
|
|
| 101 |
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
|
| 102 |
|
| 103 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
|
|
| 123 |
).images[0]
|
| 124 |
|
| 125 |
image.save("text2image.png")
|
|
|
|
| 126 |
|
| 127 |
```
|
| 128 |
|
|
|
|
| 160 |
).images[0]
|
| 161 |
|
| 162 |
edited_image.save("edited_img.png")
|
|
|
|
| 163 |
|
| 164 |
```
|
| 165 |
|