File size: 2,054 Bytes
c61432c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- f1
- recall
- accuracy
- precision
model-index:
- name: bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-test-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-test-3

This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5287
- F1: 0.4018
- Recall: 0.3146
- Accuracy: 0.3146
- Precision: 0.6085

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Recall | Accuracy | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:|
| 2.1331        | 1.0   | 1546 | 3.1241          | 0.3069 | 0.2550 | 0.2550   | 0.4860    |
| 1.5436        | 2.0   | 3092 | 2.8434          | 0.3705 | 0.3091 | 0.3091   | 0.5677    |
| 0.9374        | 3.0   | 4638 | 2.8335          | 0.3988 | 0.3280 | 0.3280   | 0.5673    |
| 0.5072        | 4.0   | 6184 | 2.9788          | 0.4117 | 0.3359 | 0.3359   | 0.5901    |
| 0.27          | 5.0   | 7730 | 3.5287          | 0.4018 | 0.3146 | 0.3146   | 0.6085    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3