SlyGoblin commited on
Commit
f0a8731
1 Parent(s): 776e27c

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +74 -177
README.md CHANGED
@@ -1,204 +1,101 @@
1
  ---
 
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  base_model: mistralai/Mistral-7B-Instruct-v0.2
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
 
202
  ### Framework versions
203
 
204
- - PEFT 0.8.2
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ - natural-language-processing
9
+ - chatbot
10
+ - resume-evaluation
11
+
12
  base_model: mistralai/Mistral-7B-Instruct-v0.2
13
+ model-index:
14
+ - name: mistral_instruct_generation
15
+ results:
16
+ - task:
17
+ name: Resume Scoring
18
+ type: text-generation
19
+ metrics:
20
+ - name: Loss
21
+ type: Lower is better
22
+ value: 1.6300
23
  ---
24
 
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ # mistral_instruct_generation (Resume ATS score generation based on Job description)
29
 
30
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
31
+ This model is a specialized chatbot designed to automate the evaluation of resumes by providing an ATS (Applicant Tracking System) score based on a given job description. It is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), utilizing a custom dataset tailored for the nuances of job descriptions and resume content.
32
 
33
+ ## Model description
34
 
 
35
 
36
+ The `mistral_instruct_generation` model employs advanced NLP techniques to understand and compare the content of resumes against job descriptions. It aims to support applicants by offering an automated, preliminary assessment of candidate suitability, streamlining the initial stages of the hiring process.
37
 
 
38
 
39
+ ## Intended uses & limitations
40
 
41
+ This model is intended for use in HR technology platforms and recruitment software, providing an automated way to score resumes against job descriptions. It is designed to enhance, not replace, human decision-making processes in recruitment.
42
+ Limitations include potential biases in training data and the need for regular updates to adapt to evolving job market requirements. Users should be aware of these limitations and use the model's output as one of several tools in a comprehensive recruitment process.
43
 
44
+ ## Training and evaluation data
45
 
46
+ More information needed
47
 
48
+ ## Training procedure
49
 
 
50
 
51
+ The model was trained on a Custom dataset comprising pairs of resumes and job descriptions across various industries. This dataset was curated to cover a broad spectrum of job roles, experience levels, and skills. The specifics of the dataset composition can provide further insights into the model's capabilities and potential biases.
52
 
 
53
 
54
+ ### Training hyperparameters
55
 
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.0002
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: constant
63
+ - lr_scheduler_warmup_steps: 0.03
64
+ - num_epochs: 4
65
 
66
+ ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss |
69
+ |:-------------:|:-----:|:----:|:---------------:|
70
+ | 1.8804 | 0.17 | 20 | 1.8834 |
71
+ | 1.8364 | 0.34 | 40 | 1.8631 |
72
+ | 1.8363 | 0.51 | 60 | 1.8547 |
73
+ | 1.8312 | 0.68 | 80 | 1.8298 |
74
+ | 1.7648 | 0.85 | 100 | 1.8102 |
75
+ | 1.6197 | 1.02 | 120 | 1.7888 |
76
+ | 1.6869 | 1.19 | 140 | 1.7887 |
77
+ | 1.5637 | 1.36 | 160 | 1.7672 |
78
+ | 1.6921 | 1.53 | 180 | 1.7476 |
79
+ | 1.5883 | 1.69 | 200 | 1.7305 |
80
+ | 1.5235 | 1.86 | 220 | 1.7099 |
81
+ | 1.6134 | 2.03 | 240 | 1.7045 |
82
+ | 1.4006 | 2.2 | 260 | 1.7191 |
83
+ | 1.5571 | 2.37 | 280 | 1.6963 |
84
+ | 1.3889 | 2.54 | 300 | 1.6869 |
85
+ | 1.4278 | 2.71 | 320 | 1.6658 |
86
+ | 1.3868 | 2.88 | 340 | 1.6592 |
87
+ | 1.1515 | 3.05 | 360 | 1.6576 |
88
+ | 1.2761 | 3.22 | 380 | 1.6553 |
89
+ | 1.1679 | 3.39 | 400 | 1.6439 |
90
+ | 1.3966 | 3.56 | 420 | 1.6301 |
91
+ | 1.2536 | 3.73 | 440 | 1.6200 |
92
+ | 1.262 | 3.9 | 460 | 1.6300 |
93
 
94
 
95
  ### Framework versions
96
 
97
+ - PEFT 0.8.2
98
+ - Transformers 4.36.2
99
+ - Pytorch 2.1.0+cu121
100
+ - Datasets 2.16.0
101
+ - Tokenizers 0.15.2