Update README.md
Browse files
README.md
CHANGED
@@ -6,24 +6,98 @@ datasets:
|
|
6 |
language:
|
7 |
- en
|
8 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
# **Doge 320M checkpoint**
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
- **[Doge-20M](https://huggingface.co/SmallDoge/Doge-20M-checkpoint)**: 8e-3
|
20 |
-
- **[Doge-60M](https://huggingface.co/SmallDoge/Doge-60M-checkpoint)**: 6e-3
|
21 |
-
- **[Doge-160M](https://huggingface.co/SmallDoge/Doge-160M-checkpoint)**: 4e-3
|
22 |
-
- **[Doge-320M](https://huggingface.co/SmallDoge/Doge-320M-checkpoint)**: 2e-3
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
language:
|
7 |
- en
|
8 |
pipeline_tag: text-generation
|
9 |
+
tags:
|
10 |
+
- pt
|
11 |
+
- doge
|
12 |
---
|
13 |
|
|
|
14 |
|
15 |
+
# **Doge 320M**
|
16 |
|
17 |
+
<div align="center">
|
18 |
+
<img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
|
19 |
+
</div>
|
20 |
+
<hr>
|
21 |
+
<div align="center">
|
22 |
+
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
|
23 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
24 |
+
</a>
|
25 |
+
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
|
26 |
+
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
27 |
+
</a>
|
28 |
+
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
|
29 |
+
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
|
30 |
+
</a>
|
31 |
+
<a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
|
32 |
+
<img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
|
33 |
+
</a>
|
34 |
+
</div>
|
35 |
|
36 |
+
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
## Uses
|
40 |
+
|
41 |
+
```python
|
42 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
+
|
44 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M")
|
45 |
+
>>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M", trust_remote_code=True)
|
46 |
+
>>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
|
47 |
+
|
48 |
+
>>> out = model.generate(**inputs, max_new_tokens=100)
|
49 |
+
>>> print(tokenizer.batch_decode(out))
|
50 |
+
```
|
51 |
+
|
52 |
+
|
53 |
+
## Model Details
|
54 |
+
|
55 |
+
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-160M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-160M-Instruct).
|
56 |
+
|
57 |
+
|
58 |
+
**Pre-Training**:
|
59 |
+
|
60 |
+
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
|
61 |
+
|---|---|---|---|---|---|---|---|---|
|
62 |
+
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
|
63 |
+
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
|
64 |
+
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
|
65 |
+
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
|
66 |
+
|
67 |
+
**Evaluation**:
|
68 |
+
|
69 |
+
| Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on i7-11 CPU |
|
70 |
+
|---|---|---|---|---|---|---|---|---|
|
71 |
+
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
|
72 |
+
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
|
73 |
+
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 66.3 | 38.7 | 34.4 | 52.2 | 28 |
|
74 |
+
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 33.8 | 9.4 | 52.1 | 69.9 | 46.5 | 37.9 | 55.0 | 16 |
|
75 |
+
|
76 |
+
> [!NOTE]
|
77 |
+
> All evaluations are done using five-shot settings, without additional training on the benchmarks.
|
78 |
+
|
79 |
+
**Procedure**:
|
80 |
+
|
81 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/y18ty3sh)
|
82 |
+
|
83 |
+
|
84 |
+
**Environment**:
|
85 |
+
|
86 |
+
- Image: nvcr.io/nvidia/pytorch:24.12-py3
|
87 |
+
- Hardware: 1x NVIDIA RTX 4090
|
88 |
+
- Software: Transformers
|
89 |
+
|
90 |
+
|
91 |
+
## Citation
|
92 |
+
|
93 |
+
```bibtex
|
94 |
+
@misc{shi2024wonderfulmatrices,
|
95 |
+
title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture},
|
96 |
+
author={Jingze Shi and Bingheng Wu},
|
97 |
+
year={2024},
|
98 |
+
eprint={2412.11834},
|
99 |
+
archivePrefix={arXiv},
|
100 |
+
primaryClass={cs.LG},
|
101 |
+
url={https://arxiv.org/abs/2412.11834},
|
102 |
+
}
|
103 |
+
```
|