JingzeShi commited on
Commit
63a8e45
·
verified ·
1 Parent(s): 46789e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -14
README.md CHANGED
@@ -6,24 +6,98 @@ datasets:
6
  language:
7
  - en
8
  pipeline_tag: text-generation
 
 
 
9
  ---
10
 
11
- # **Doge 320M checkpoint**
12
 
13
- ![wsd_scheduler](./wsd_scheduler.png)
14
 
15
- Doge uses `wsd_scheduler` as the training scheduler, which divides the learning rate into three stages: `warmup`, `stable`, and `decay`. It allows us to continue training on any new dataset from any checkpoint in the `stable stage` without spikes of the training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- Here are the initial learning rates required to continue training at each checkpoint:
18
 
19
- - **[Doge-20M](https://huggingface.co/SmallDoge/Doge-20M-checkpoint)**: 8e-3
20
- - **[Doge-60M](https://huggingface.co/SmallDoge/Doge-60M-checkpoint)**: 6e-3
21
- - **[Doge-160M](https://huggingface.co/SmallDoge/Doge-160M-checkpoint)**: 4e-3
22
- - **[Doge-320M](https://huggingface.co/SmallDoge/Doge-320M-checkpoint)**: 2e-3
23
 
24
- | Model | Learning Rate | Schedule | Warmup Steps | Stable Steps |
25
- |-------|---------------|----------|--------------|--------------|
26
- | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M-checkpoint) | 8e-3 | wsd_scheduler | 800 | 6400 |
27
- | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M-checkpoint) | 6e-3 | wsd_scheduler | 1600 | 12800 |
28
- | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M-checkpoint) | 4e-3 | wsd_scheduler | 2400 | 19200 |
29
- | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M-checkpoint) | 2e-3 | wsd_scheduler | 3200 | 25600 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  language:
7
  - en
8
  pipeline_tag: text-generation
9
+ tags:
10
+ - pt
11
+ - doge
12
  ---
13
 
 
14
 
15
+ # **Doge 320M**
16
 
17
+ <div align="center">
18
+ <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
19
+ </div>
20
+ <hr>
21
+ <div align="center">
22
+ <a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
23
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
24
+ </a>
25
+ <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
26
+ <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
27
+ </a>
28
+ <a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
29
+ <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
30
+ </a>
31
+ <a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
32
+ <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
33
+ </a>
34
+ </div>
35
 
36
+ Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.
37
 
 
 
 
 
38
 
39
+ ## Uses
40
+
41
+ ```python
42
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
43
+
44
+ >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M")
45
+ >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M", trust_remote_code=True)
46
+ >>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
47
+
48
+ >>> out = model.generate(**inputs, max_new_tokens=100)
49
+ >>> print(tokenizer.batch_decode(out))
50
+ ```
51
+
52
+
53
+ ## Model Details
54
+
55
+ We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-160M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-160M-Instruct).
56
+
57
+
58
+ **Pre-Training**:
59
+
60
+ | Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
61
+ |---|---|---|---|---|---|---|---|---|
62
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
63
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
64
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
65
+ | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
66
+
67
+ **Evaluation**:
68
+
69
+ | Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on i7-11 CPU |
70
+ |---|---|---|---|---|---|---|---|---|
71
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
72
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
73
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 66.3 | 38.7 | 34.4 | 52.2 | 28 |
74
+ | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 33.8 | 9.4 | 52.1 | 69.9 | 46.5 | 37.9 | 55.0 | 16 |
75
+
76
+ > [!NOTE]
77
+ > All evaluations are done using five-shot settings, without additional training on the benchmarks.
78
+
79
+ **Procedure**:
80
+
81
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/y18ty3sh)
82
+
83
+
84
+ **Environment**:
85
+
86
+ - Image: nvcr.io/nvidia/pytorch:24.12-py3
87
+ - Hardware: 1x NVIDIA RTX 4090
88
+ - Software: Transformers
89
+
90
+
91
+ ## Citation
92
+
93
+ ```bibtex
94
+ @misc{shi2024wonderfulmatrices,
95
+ title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture},
96
+ author={Jingze Shi and Bingheng Wu},
97
+ year={2024},
98
+ eprint={2412.11834},
99
+ archivePrefix={arXiv},
100
+ primaryClass={cs.LG},
101
+ url={https://arxiv.org/abs/2412.11834},
102
+ }
103
+ ```