Update README.md
Browse files
README.md
CHANGED
@@ -25,9 +25,9 @@ tags:
|
|
25 |
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
|
26 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
27 |
</a>
|
28 |
-
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
|
29 |
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
30 |
-
</a>
|
31 |
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
|
32 |
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
|
33 |
</a>
|
@@ -36,7 +36,7 @@ tags:
|
|
36 |
</a>
|
37 |
</div>
|
38 |
|
39 |
-
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture,
|
40 |
|
41 |
|
42 |
## Uses
|
@@ -83,13 +83,13 @@ outputs = model.generate(
|
|
83 |
|
84 |
We build the Doge-Instruct-SFT by SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk).
|
85 |
|
86 |
-
> TODO: The larger model is under training and will be uploaded soon.
|
87 |
-
|
88 |
**SFT**:
|
89 |
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|
90 |
|---|---|---|---|---|---|---|
|
91 |
-
| [Doge-20M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-Instruct-SFT) | [
|
92 |
-
| [Doge-60M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-60M-Instruct-SFT) | [
|
|
|
|
|
93 |
|
94 |
|
95 |
**Procedure**:
|
@@ -107,13 +107,11 @@ We build the Doge-Instruct-SFT by SFT on [SmolTalk](https://huggingface.co/datas
|
|
107 |
## Citation
|
108 |
|
109 |
```bibtex
|
110 |
-
@misc{
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
primaryClass={cs.LG},
|
117 |
-
url={https://arxiv.org/abs/2412.11834},
|
118 |
}
|
119 |
```
|
|
|
25 |
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
|
26 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
27 |
</a>
|
28 |
+
<!-- <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
|
29 |
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
30 |
+
</a> -->
|
31 |
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
|
32 |
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
|
33 |
</a>
|
|
|
36 |
</a>
|
37 |
</div>
|
38 |
|
39 |
+
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the [small-doge](https://github.com/SmallDoges/small-doge) repository.
|
40 |
|
41 |
|
42 |
## Uses
|
|
|
83 |
|
84 |
We build the Doge-Instruct-SFT by SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk).
|
85 |
|
|
|
|
|
86 |
**SFT**:
|
87 |
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|
88 |
|---|---|---|---|---|---|---|
|
89 |
+
| [Doge-20M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 8e-4 | 0.25M | bfloat16 |
|
90 |
+
| [Doge-60M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-60M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 6e-4 | 0.25M | bfloat16 |
|
91 |
+
| [Doge-160M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-160M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 4e-4 | 0.25M | bfloat16 |
|
92 |
+
| [Doge-320M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-320M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 2e-4 | 0.25M | bfloat16 |
|
93 |
|
94 |
|
95 |
**Procedure**:
|
|
|
107 |
## Citation
|
108 |
|
109 |
```bibtex
|
110 |
+
@misc{smalldoges,
|
111 |
+
title={SmallDoges: A Family of Dynamic UltraFast Small Language Models},
|
112 |
+
author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
|
113 |
+
year={2025},
|
114 |
+
month={March},
|
115 |
+
url={https://github.com/SmallDoges/small-doge}
|
|
|
|
|
116 |
}
|
117 |
```
|