Keeby-smilyai commited on
Commit
fcbcdf4
·
verified ·
1 Parent(s): 5c49f8c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -3
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - pfb30/multi_woz_v22
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+ model_card = """
10
+ # 🧠 Model Card: Sam‑2.0
11
+
12
+ ## 📌 Model Overview
13
+ **Sam‑2.0** is a modular, head‑agnostic Transformer architecture designed for chat‑style and multimodal reasoning tasks. It emphasizes reproducibility, ablation‑friendly design, and clean benchmarking across input modalities.
14
+
15
+ - **Architecture**: Transformer encoder with RoPE positional encoding, MQA attention, and modular input adapters
16
+ - **Training Objective**: Causal language modeling (CLM)
17
+ - **Checkpoint**: `sam2-epoch35.safetensors`
18
+ - **Final Train Loss**: 1.04
19
+ - **Validation Loss**: Not tracked in this run
20
+ - **Training Duration**: ~6272s over 35 epochs
21
+ - **Framework**: PyTorch + Hugging Face Transformers (custom registry)
22
+
23
+ ## 🧱 Model Architecture
24
+ | Component | Description |
25
+ |------------------|-----------------------------------------------------------------------------|
26
+ | Backbone | Transformer encoder with RoPE and MQA |
27
+ | Input Adapter | Tokenizer-driven byte-level embedding layer |
28
+ | Positional Bias | Rotary embeddings (RoPE) |
29
+ | Attention | Multi-query attention (MQA) |
30
+ | Head | Head-agnostic registry (default: classification placeholder) |
31
+ | Checkpoint Format| `safetensors` with metadata for reproducibility |
32
+
33
+ ## 🧪 Training Details
34
+ - **Dataset**: Synthetic chat-style corpus with adversarial prompt patterns
35
+ - **Batch Size**: 1055 steps per epoch
36
+ - **Optimizer**: AdamW
37
+ - **Learning Rate Schedule**: Cosine decay with warmup
38
+ - **Loss Function**: Cross-entropy over token predictions
39
+ - **Hardware**: Kaggle TPUv2 (simulated)
40
+ - **Logging**: Step-wise loss tracking, no validation during training
41
+
42
+ ## 📊 Evaluation
43
+ | Metric | Value | Notes |
44
+ |----------------|-------------|---------------------------------------|
45
+ | Final Train Loss | 1.04 | Achieved at Epoch 35/35 |
46
+ | Validation Loss | — | Not tracked in this run |
47
+ | Inference Speed | Fast | Optimized for edge deployment |
48
+ | Generalisation | TBD | To be compared against Sam‑2.5 |
49
+
50
+ ## 🔧 Intended Use
51
+ - **Research**: Benchmarking modular architectures and ablation studies
52
+ - **Education**: Reasoning scaffolds and logic quizzes
53
+ - **Deployment**: Lightweight agents for chat and multimodal fusion (with adapters)
54
+
55
+ ## 🚫 Limitations
56
+ - No validation tracking — generalisation must be inferred via external harnesses
57
+ - Trained on synthetic data — may not generalize to real-world dialogue without fine-tuning
58
+ - Head is placeholder — downstream tasks require custom head registration
59
+
60
+ ## 📁 Files
61
+ - `sam2-epoch35.safetensors` — final checkpoint
62
+ - `config.yaml` — architecture and training config
63
+ - `tokenizer.json` — byte-level tokenizer
64
+ - `README.md` — training logs and setup instructions
65
+
66
+ ## 🧩 How to Load
67
+ ```python
68
+ from sam2 import build_sam2_model
69
+ import torch
70
+
71
+ model = build_sam2_model(config="config.yaml")
72
+ model.load_state_dict(torch.load("sam2-epoch35.safetensors"))
73
+ model.eval()