Upload folder using huggingface_hub
Browse files- README.md +138 -0
- config.json +141 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- token-classification
|
6 |
+
- pii
|
7 |
+
- privacy
|
8 |
+
- personal-information
|
9 |
+
- bert
|
10 |
+
- distilbert
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: token-classification
|
14 |
+
library_name: transformers
|
15 |
+
datasets:
|
16 |
+
- ai4privacy/pii-masking-200k
|
17 |
+
metrics:
|
18 |
+
- f1
|
19 |
+
- precision
|
20 |
+
- recall
|
21 |
+
widget:
|
22 |
+
- text: "Hi, my name is John Smith and my email is [email protected]"
|
23 |
+
example_title: "Example with PII"
|
24 |
+
---
|
25 |
+
|
26 |
+
# BERT PII Detection Model
|
27 |
+
|
28 |
+
Fine-tuned DistilBERT model for Personal Identifiable Information (PII) detection and classification.
|
29 |
+
|
30 |
+
## Model Details
|
31 |
+
|
32 |
+
- **Base Model**: `distilbert-base-uncased`
|
33 |
+
- **Task**: Token Classification (Named Entity Recognition)
|
34 |
+
- **Languages**: English
|
35 |
+
- **License**: MIT
|
36 |
+
- **Fine-tuned on**: AI4Privacy PII-200k dataset
|
37 |
+
|
38 |
+
## Supported PII Entity Types
|
39 |
+
|
40 |
+
This model can detect 56 different types of PII entities including:
|
41 |
+
|
42 |
+
**Personal Information:**
|
43 |
+
- FIRSTNAME, LASTNAME, MIDDLENAME
|
44 |
+
- EMAIL, PHONENUMBER, USERNAME
|
45 |
+
- DATE, TIME, DOB, AGE
|
46 |
+
|
47 |
+
**Address Information:**
|
48 |
+
- STREET, CITY, STATE, COUNTY
|
49 |
+
- ZIPCODE, BUILDINGNUMBER
|
50 |
+
- SECONDARYADDRESS
|
51 |
+
|
52 |
+
**Financial Information:**
|
53 |
+
- CREDITCARDNUMBER, CREDITCARDISSUER, CREDITCARDCVV
|
54 |
+
- ACCOUNTNAME, ACCOUNTNUMBER, IBAN, BIC
|
55 |
+
- AMOUNT, CURRENCY, CURRENCYCODE, CURRENCYSYMBOL
|
56 |
+
|
57 |
+
**Identification:**
|
58 |
+
- SSN, PIN, PASSWORD
|
59 |
+
- IP, IPV4, IPV6, MAC
|
60 |
+
- ETHEREUMADDRESS, BITCOINADDRESS, LITECOINADDRESS
|
61 |
+
|
62 |
+
**Professional Information:**
|
63 |
+
- JOBTITLE, JOBTYPE, JOBAREA, COMPANYNAME
|
64 |
+
|
65 |
+
**And many more...**
|
66 |
+
|
67 |
+
## Usage
|
68 |
+
|
69 |
+
```python
|
70 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
71 |
+
from transformers import pipeline
|
72 |
+
|
73 |
+
# Load model and tokenizer
|
74 |
+
model_name = "SoelMgd/bert-pii-detection"
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
77 |
+
|
78 |
+
# Create NER pipeline
|
79 |
+
ner_pipeline = pipeline(
|
80 |
+
"ner",
|
81 |
+
model=model,
|
82 |
+
tokenizer=tokenizer,
|
83 |
+
aggregation_strategy="simple"
|
84 |
+
)
|
85 |
+
|
86 |
+
# Example usage
|
87 |
+
text = "Hi, my name is John Smith and my email is [email protected]"
|
88 |
+
entities = ner_pipeline(text)
|
89 |
+
print(entities)
|
90 |
+
```
|
91 |
+
|
92 |
+
## Training Data
|
93 |
+
|
94 |
+
- **Dataset**: AI4Privacy PII-200k
|
95 |
+
- **Size**: ~209k examples
|
96 |
+
- **Languages**: English, French, German, Italian (this model: English only)
|
97 |
+
- **Entity Types**: 56 different PII categories
|
98 |
+
|
99 |
+
## Performance
|
100 |
+
|
101 |
+
The model achieves high performance on PII detection tasks with good precision and recall across different entity types.
|
102 |
+
|
103 |
+
## Intended Use
|
104 |
+
|
105 |
+
This model is designed for:
|
106 |
+
- PII detection and masking in text
|
107 |
+
- Privacy compliance applications
|
108 |
+
- Data anonymization pipelines
|
109 |
+
- Content moderation systems
|
110 |
+
|
111 |
+
## Limitations
|
112 |
+
|
113 |
+
- Trained primarily on English text
|
114 |
+
- May not generalize to domain-specific jargon
|
115 |
+
- Performance may vary on very short or very long texts
|
116 |
+
- Should be validated on your specific use case
|
117 |
+
|
118 |
+
## Ethical Considerations
|
119 |
+
|
120 |
+
This model is intended to help protect privacy by identifying PII. Users should:
|
121 |
+
- Test thoroughly on their specific data
|
122 |
+
- Implement appropriate safeguards
|
123 |
+
- Consider the legal requirements in their jurisdiction
|
124 |
+
- Be aware that no automated system is 100% accurate
|
125 |
+
|
126 |
+
## Citation
|
127 |
+
|
128 |
+
If you use this model, please cite:
|
129 |
+
|
130 |
+
```bibtex
|
131 |
+
@misc{bert-pii-detection,
|
132 |
+
title={BERT PII Detection Model},
|
133 |
+
author={SoelMgd},
|
134 |
+
year={2025},
|
135 |
+
publisher={Hugging Face},
|
136 |
+
url={https://huggingface.co/SoelMgd/bert-pii-detection}
|
137 |
+
}
|
138 |
+
```
|
config.json
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"id2label": {
|
11 |
+
"0": "ACCOUNTNAME",
|
12 |
+
"1": "ACCOUNTNUMBER",
|
13 |
+
"2": "AGE",
|
14 |
+
"3": "AMOUNT",
|
15 |
+
"4": "BIC",
|
16 |
+
"5": "BITCOINADDRESS",
|
17 |
+
"6": "BUILDINGNUMBER",
|
18 |
+
"7": "CITY",
|
19 |
+
"8": "COMPANYNAME",
|
20 |
+
"9": "COUNTY",
|
21 |
+
"10": "CREDITCARDCVV",
|
22 |
+
"11": "CREDITCARDISSUER",
|
23 |
+
"12": "CREDITCARDNUMBER",
|
24 |
+
"13": "CURRENCY",
|
25 |
+
"14": "CURRENCYCODE",
|
26 |
+
"15": "CURRENCYNAME",
|
27 |
+
"16": "CURRENCYSYMBOL",
|
28 |
+
"17": "DATE",
|
29 |
+
"18": "DOB",
|
30 |
+
"19": "EMAIL",
|
31 |
+
"20": "ETHEREUMADDRESS",
|
32 |
+
"21": "EYECOLOR",
|
33 |
+
"22": "FIRSTNAME",
|
34 |
+
"23": "GENDER",
|
35 |
+
"24": "HEIGHT",
|
36 |
+
"25": "IBAN",
|
37 |
+
"26": "IP",
|
38 |
+
"27": "IPV4",
|
39 |
+
"28": "IPV6",
|
40 |
+
"29": "JOBAREA",
|
41 |
+
"30": "JOBTITLE",
|
42 |
+
"31": "JOBTYPE",
|
43 |
+
"32": "LASTNAME",
|
44 |
+
"33": "LITECOINADDRESS",
|
45 |
+
"34": "MAC",
|
46 |
+
"35": "MASKEDNUMBER",
|
47 |
+
"36": "MIDDLENAME",
|
48 |
+
"37": "NEARBYGPSCOORDINATE",
|
49 |
+
"38": "O",
|
50 |
+
"39": "ORDINALDIRECTION",
|
51 |
+
"40": "PASSWORD",
|
52 |
+
"41": "PHONEIMEI",
|
53 |
+
"42": "PHONENUMBER",
|
54 |
+
"43": "PIN",
|
55 |
+
"44": "PREFIX",
|
56 |
+
"45": "SECONDARYADDRESS",
|
57 |
+
"46": "SEX",
|
58 |
+
"47": "SSN",
|
59 |
+
"48": "STATE",
|
60 |
+
"49": "STREET",
|
61 |
+
"50": "TIME",
|
62 |
+
"51": "URL",
|
63 |
+
"52": "USERAGENT",
|
64 |
+
"53": "USERNAME",
|
65 |
+
"54": "VEHICLEVIN",
|
66 |
+
"55": "VEHICLEVRM",
|
67 |
+
"56": "ZIPCODE"
|
68 |
+
},
|
69 |
+
"initializer_range": 0.02,
|
70 |
+
"label2id": {
|
71 |
+
"ACCOUNTNAME": 0,
|
72 |
+
"ACCOUNTNUMBER": 1,
|
73 |
+
"AGE": 2,
|
74 |
+
"AMOUNT": 3,
|
75 |
+
"BIC": 4,
|
76 |
+
"BITCOINADDRESS": 5,
|
77 |
+
"BUILDINGNUMBER": 6,
|
78 |
+
"CITY": 7,
|
79 |
+
"COMPANYNAME": 8,
|
80 |
+
"COUNTY": 9,
|
81 |
+
"CREDITCARDCVV": 10,
|
82 |
+
"CREDITCARDISSUER": 11,
|
83 |
+
"CREDITCARDNUMBER": 12,
|
84 |
+
"CURRENCY": 13,
|
85 |
+
"CURRENCYCODE": 14,
|
86 |
+
"CURRENCYNAME": 15,
|
87 |
+
"CURRENCYSYMBOL": 16,
|
88 |
+
"DATE": 17,
|
89 |
+
"DOB": 18,
|
90 |
+
"EMAIL": 19,
|
91 |
+
"ETHEREUMADDRESS": 20,
|
92 |
+
"EYECOLOR": 21,
|
93 |
+
"FIRSTNAME": 22,
|
94 |
+
"GENDER": 23,
|
95 |
+
"HEIGHT": 24,
|
96 |
+
"IBAN": 25,
|
97 |
+
"IP": 26,
|
98 |
+
"IPV4": 27,
|
99 |
+
"IPV6": 28,
|
100 |
+
"JOBAREA": 29,
|
101 |
+
"JOBTITLE": 30,
|
102 |
+
"JOBTYPE": 31,
|
103 |
+
"LASTNAME": 32,
|
104 |
+
"LITECOINADDRESS": 33,
|
105 |
+
"MAC": 34,
|
106 |
+
"MASKEDNUMBER": 35,
|
107 |
+
"MIDDLENAME": 36,
|
108 |
+
"NEARBYGPSCOORDINATE": 37,
|
109 |
+
"O": 38,
|
110 |
+
"ORDINALDIRECTION": 39,
|
111 |
+
"PASSWORD": 40,
|
112 |
+
"PHONEIMEI": 41,
|
113 |
+
"PHONENUMBER": 42,
|
114 |
+
"PIN": 43,
|
115 |
+
"PREFIX": 44,
|
116 |
+
"SECONDARYADDRESS": 45,
|
117 |
+
"SEX": 46,
|
118 |
+
"SSN": 47,
|
119 |
+
"STATE": 48,
|
120 |
+
"STREET": 49,
|
121 |
+
"TIME": 50,
|
122 |
+
"URL": 51,
|
123 |
+
"USERAGENT": 52,
|
124 |
+
"USERNAME": 53,
|
125 |
+
"VEHICLEVIN": 54,
|
126 |
+
"VEHICLEVRM": 55,
|
127 |
+
"ZIPCODE": 56
|
128 |
+
},
|
129 |
+
"max_position_embeddings": 512,
|
130 |
+
"model_type": "distilbert",
|
131 |
+
"n_heads": 12,
|
132 |
+
"n_layers": 6,
|
133 |
+
"pad_token_id": 0,
|
134 |
+
"qa_dropout": 0.1,
|
135 |
+
"seq_classif_dropout": 0.2,
|
136 |
+
"sinusoidal_pos_embds": false,
|
137 |
+
"tie_weights_": true,
|
138 |
+
"torch_dtype": "float32",
|
139 |
+
"transformers_version": "4.52.4",
|
140 |
+
"vocab_size": 30522
|
141 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49023596d0378adbb3ea9e52bf4085c7d0c3dcc594397ab72b65594d8086cbd1
|
3 |
+
size 265639204
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d1ec4cf7dcd7328946a00f36d8589b1df61b1b2703a5bcff0f4dec4158c02c
|
3 |
+
size 5240
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|