File size: 4,542 Bytes
31f23f1 38a21f4 14b3fa8 cde29a7 38a21f4 cde29a7 31f23f1 cde29a7 38a21f4 14b3fa8 cde29a7 38a21f4 822ac71 cde29a7 822ac71 38a21f4 cde29a7 38a21f4 cde29a7 14b3fa8 cde29a7 38a21f4 14b3fa8 cde29a7 38a21f4 822ac71 38a21f4 7e3ab71 14b3fa8 cde29a7 7e3ab71 6a7d3d7 38a21f4 31f23f1 38a21f4 6b340f0 38a21f4 7e3ab71 38a21f4 822ac71 cde29a7 31f23f1 cde29a7 31f23f1 cde29a7 31f23f1 6a7d3d7 cde29a7 a139ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
#%%
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
# from albumentations.pytorch import ToTensorV2
from PIL import Image
import torch
import torch.nn as nn
import json
# from transformers import AutoImageProcessor
# from create_model import HieraForImageClassification
#%%
# %%
SZ = 224
LABELS = json.load(open("./labels_class_map_rev.json"))
ORIGINAL_LABELS = json.load(open("./original_mapping.json"))
def is_gpu_available():
"""Check if the python package `onnxruntime-gpu` is installed."""
return torch.cuda.is_available()
# VALID_AUG = A.Compose([
# A.SmallestMaxSize(max_size=SZ + 16, p=1.0),
# A.CenterCrop(height=SZ, width=SZ, p=1.0),
# A.Normalize(),
# ToTensorV2(),
# ])
def get_corn_model(model_name, pretrained=True, **kwargs):
model = timm.create_model(model_name, pretrained=pretrained, **kwargs)
model = nn.Sequential(
model,
nn.Dropout(0.15),
nn.Linear(model.num_classes, model.num_classes * 2) ,
nn.Linear(model.num_classes * 2, len(LABELS))
)
return model
class PytorchWorker:
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def _load_model():
print("Setting up Pytorch Model")
print(f"Using devide: {self.device}")
model = get_corn_model("vit_base_patch16_224", pretrained=False)
model_ckpt = torch.load("./NB_EXP_V2_008/vit_base_patch16_224_224_bs32_ep16_lr6e05_wd0.05_mixup_cutmix_CV_0.pth", map_location=self.device)
model.load_state_dict(model_ckpt)
return model.to(self.device)
self.transforms = T.Compose([T.Resize((SZ, SZ)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
self.model = _load_model()
def predict_image(self, image: np.ndarray) -> list():
"""Run inference using ONNX runtime.
:param image: Input image as numpy array.
:return: A list with logits and confidences.
"""
image_data = self.transforms(image).unsqueeze(0).to(self.device)
outputs = self.model(image_data)
logits = outputs
return logits.tolist()
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
"""Make submission with given """
model = PytorchWorker()
predictions = []
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
image_path = os.path.join(images_root_path, row.filename)
# image_path = row.filename
image = Image.open(image_path).convert("RGB")
output = model.predict_image(image)
string_label_dup = LABELS.get(str(np.argmax(output)), 'Acanthophis antarcticus')
prediction_class = ORIGINAL_LABELS.get(string_label_dup, 1)
predictions.append(prediction_class)
print(predictions)
test_metadata["class_id"] = predictions
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
#%%
if __name__ == "__main__":
import zipfile
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
zip_ref.extractall("/tmp/data")
MODEL_PATH = "pytorch_model.bin"
MODEL_NAME = "swinv2_tiny_window16_256.ms_in1k"
metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
test_metadata = pd.read_csv(metadata_file_path)
# test_metadata = pd.DataFrame()
# test_metadata['filename'] = ['../sample.png', '../sample copy.png', '../sample copy 2.png']
# test_metadata['observation_id'] = [1, 2, 3]
make_submission(
test_metadata=test_metadata,
model_path=MODEL_PATH,
model_name=MODEL_NAME
)
# #%%
# import requests
# image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
# # %%
# image = VALID_AUG(image=np.array(image))['image']
# # %%
# model= PytorchWorker()
# # %%
# output = model.predict_image(image.unsqueeze(dim =0 ))
# # %%
# output
# # %%
# import numpy as np
# np.argmax(output)
# %%
# df = pd.DataFrame()
# df["filename"] = ['sample.png']
# # %%
# make_submission(
# test_metadata=df,
# model_path="MODEL_PATH",
# model_name="MODEL_NAME"
# )
# %%
# %%
|